################################################################### # # # Structured Edge Detection Toolbox V3.0 # # Piotr Dollar (pdollar-at-gmail.com) # # # ################################################################### 1. Introduction. Very fast edge detector (up to 60 fps depending on parameter settings) that achieves excellent accuracy. Can serve as input to any vision algorithm requiring high quality edge maps. Toolbox also includes the Edge Boxes object proposal generation method and fast superpixel code. If you use the Structured Edge Detection Toolbox, we appreciate it if you cite an appropriate subset of the following papers: @inproceedings{DollarICCV13edges, author = {Piotr Doll\'ar and C. Lawrence Zitnick}, title = {Structured Forests for Fast Edge Detection}, booktitle = {ICCV}, year = {2013}, } @article{DollarARXIV14edges, author = {Piotr Doll\'ar and C. Lawrence Zitnick}, title = {Fast Edge Detection Using Structured Forests}, journal = {ArXiv}, year = {2014}, } @inproceedings{ZitnickECCV14edgeBoxes, author = {C. Lawrence Zitnick and Piotr Doll\'ar}, title = {Edge Boxes: Locating Object Proposals from Edges}, booktitle = {ECCV}, year = {2014}, } ################################################################### 2. License. This code is published under the MSR-LA Full Rights License. Please read license.txt for more info. ################################################################### 3. Installation. a) This code is written for the Matlab interpreter (tested with versions R2013a-2013b) and requires the Matlab Image Processing Toolbox. b) Additionally, Piotr's Matlab Toolbox (version 3.26 or later) is also required. It can be downloaded at: https://pdollar.github.io/toolbox/. c) Next, please compile mex code from within Matlab (note: win64/linux64 binaries included): mex private/edgesDetectMex.cpp -outdir private [OMPPARAMS] mex private/edgesNmsMex.cpp -outdir private [OMPPARAMS] mex private/spDetectMex.cpp -outdir private [OMPPARAMS] mex private/edgeBoxesMex.cpp -outdir private Here [OMPPARAMS] are parameters for OpenMP and are OS and compiler dependent. Windows: [OMPPARAMS] = '-DUSEOMP' 'OPTIMFLAGS="$OPTIMFLAGS' '/openmp"' Linux V1: [OMPPARAMS] = '-DUSEOMP' CFLAGS="\$CFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp" Linux V2: [OMPPARAMS] = '-DUSEOMP' CXXFLAGS="\$CXXFLAGS -fopenmp" LDFLAGS="\$LDFLAGS -fopenmp" To compile without OpenMP simply omit [OMPPARAMS]; note that code will be single threaded in this case. d) Add edge detection code to Matlab path (change to current directory first): >> addpath(pwd); savepath; e) Finally, optionally download the BSDS500 dataset (necessary for training/evaluation): http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/ After downloading BSR/ should contain BSDS500, bench, and documentation. f) A fully trained edge model for RGB images is available as part of this release. Additional models are available online, including RGBD/D/RGB models trained on the NYU depth dataset and a larger more accurate BSDS model. ################################################################### 4. Getting Started. - Make sure to carefully follow the installation instructions above. - Please see "edgesDemo.m", "edgeBoxesDemo" and "spDemo.m" to run demos and get basic usage information. - For a detailed list of functionality see "Contents.m". ################################################################### 5. History. Version NEW - now hosting on github (https://github.com/pdollar/edges) - suppress Mac warnings, added Mac binaries - edgeBoxes: added adaptive nms variant described in arXiv15 paper Version 3.01 (09/08/2014) - spAffinities: minor fix (memory initialization) - edgesDetect: minor fix (multiscale / multiple output case) Version 3.0 (07/23/2014) - added Edge Boxes code corresponding to ECCV paper - added Sticky Superpixels code - edge detection code unchanged Version 2.0 (06/20/2014) - second version corresponding to arXiv paper - added sharpening option - added evaluation and visualization code - added NYUD demo and sweep support - various tweaks/improvements/optimizations Version 1.0 (11/12/2013) - initial version corresponding to ICCV paper ###################################################################
Structured Edge Detection Toolbox
Overview
Additional functionality for use with fastai’s medical imaging module
fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g
Machine learning for NeuroImaging in Python
nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc
Cache Requests in Deta Bases and Echo them with Deta Micros
Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.
Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.
Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach
Learning cell communication from spatial graphs of cells
ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775
CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi
Open AI's Python library
OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.
LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ
This repository contains the code and models for the following paper.
DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised
TrackFormer: Multi-Object Tracking with Transformers
TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)
UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply
Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and
OpenDILab RL Kubernetes Custom Resource and Operator Lib
DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.
Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.
ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur
Improving Non-autoregressive Generation with Mixup Training
MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p