Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Overview

Point-Based Modeling of Human Clothing

Paper | Project page | Video

This is an official PyTorch code repository of the paper "Point-Based Modeling of Human Clothing" (accepted to ICCV, 2021).

Setup

Build docker

  • Prerequisites: your nvidia driver should support cuda 10.2, Windows or Mac are not supported.
  • Clone repo:
    • git clone https://github.com/izakharkin/point_based_clothing.git
    • cd point_based_clothing
    • git submodule init && git submodule update
  • Docker setup:
  • Download 10_nvidia.json and place it in the docker/ folder
  • Create docker image:
    • Build on your own: run 2 commands
  • Inside the docker container: source activate pbc

Download data

  • Download the SMPL neutral model from SMPLify project page:
    • Register, go to the Downloads section, download SMPLIFY_CODE_V2.ZIP, and unpack it;
    • Move smplify_public/code/models/basicModel_neutral_lbs_10_207_0_v1.0.0.pkl to data/smpl_models/SMPL_NEUTRAL.pkl.
  • Download models checkpoints (~570 Mb): Google Drive and place them to the checkpoints/ folder;
  • Download a sample data we provide to check the appearance fitting (~480 Mb): Google Drive, unpack it, and place psp/ folder to the samples/ folder.

Run

We provide scripts for geometry fitting and inference and appearance fitting and inference.

Geometry (outfit code)

Fitting

To fit a style outfit code to a single image one can run:

python fit_outfit_code.py --config_name=outfit_code/psp

The learned outfit codes are saved to out/outfit_code/outfit_codes_<dset_name>.pkl by default. The visualization of the process is in out/outfit_code/vis_<dset_name>/:

  • Coarse fitting stage: four outfit codes initialized randomly and being optimized simultaneosly.

outfit_code_fitting_coarse

  • Fine fitting stage: mean of found outfit codes is being optimized further to possibly imrove the reconstruction.

outfit_code_fitting_fine

Note: visibility_thr hyperparameter in fit_outfit_code.py may affect the quality of result point cloud (e.f. make it more sparse). Feel free to tune it if the result seems not perfect.

vis_thr_360

Inference

outfit_code_inference

To further infer the fitted outfit style on the train or on new subjects please see infer_outfit_code.ipynb. To run jupyter notebook server from the docker, run this inside the container:

jupyter notebook --ip=0.0.0.0 --port=8087 --no-browser 

Appearance (neural descriptors)

Fitting

To fit a clothing appearance to a sequence of frames one can run:

python fit_appearance.py --config_name=appearance/psp_male-3-casual

The learned neural descriptors ntex0_<epoch>.pth and neural rendering network weights model0_<epoch>.pth are saved to out/appearance/<dset_name>/<subject_id>/<experiment_dir>/checkpoints/ by default. The visualization of the process is in out/appearance/<dset_name>/<subject_id>/<experiment_dir>/visuals/.

Inference

appearance_inference

To further infer the fitted clothing point cloud and its appearance on the train or on new subjects please see infer_appearance.ipynb. To run jupyter notebook server from the docker, run this inside the container:

jupyter notebook --ip=0.0.0.0 --port=8087 --no-browser 

Citation

If you find our work helpful, please do not hesitate to cite us:

@InProceedings{Zakharkin_2021_ICCV,
    author    = {Zakharkin, Ilya and Mazur, Kirill and Grigorev, Artur and Lempitsky, Victor},
    title     = {Point-Based Modeling of Human Clothing},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14718-14727}
}

Non-commercial use only.

Related projects

We also thank the authors of Cloth3D and PeopleSnapshot datasets.

Owner
Visual Understanding Lab @ Samsung AI Center Moscow
Visual Understanding Lab @ Samsung AI Center Moscow
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
5 Jan 05, 2023
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023