Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Overview

Self-labelling via simultaneous clustering and representation learning

🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvision ResNet models to make loading much easier + added baselines using better MoCov2 augmentation (~69% LP performance) + added evaluation with K=1000 for ImageNet "unuspervised clustering"

🆕 ✅ 🎉 updated code: 23rd April 2020: bug fixes + CIFAR code + evaluation for resnet & alexnet.

Checkout our blogpost for a quick non-technical overview and an interactive visualization of our clusters.

Self-Label

This code is the official implementation of the ICLR 2020 paper Self-labelling via simultaneous clustering and representation learning.

Abstract

Combining clustering and representation learning is one of the most promising approaches for unsupervised learning of deep neural networks. However, doing so naively leads to ill posed learning problems with degenerate solutions. In this paper, we propose a novel and principled learning formulation that addresses these issues. The method is obtained by maximizing the information between labels and input data indices. We show that this criterion extends standard crossentropy minimization to an optimal transport problem, which we solve efficiently for millions of input images and thousands of labels using a fast variant of the Sinkhorn-Knopp algorithm. The resulting method is able to self-label visual data so as to train highly competitive image representations without manual labels. Our method achieves state of the art representation learning performance for AlexNet and ResNet-50 on SVHN, CIFAR-10, CIFAR-100 and ImageNet.

Results at a glance

NMI(%) aNMI(%) ARI(%) LP Acc (%)
AlexNet 1k 50.5 12.2 2.7 42.1
AlexNet 10k 66.4 4.7 4.7 43.8
R50 10x3k 54.2 34.4 7.2 61.5

With better augmentations (all single crop)

Label-Acc NMI(%) aNMI(%) ARI(%) LP Acc (%) model_weights
Aug++ R18 1k (new) 26.9 62.7 36.4 12.5 53.3 here
Aug++ R50 1k (new) 30.5 65.7 42.0 16.2 63.5 here
Aug++ R50 10x3k (new) 38.1 75.7 52.8 27.6 68.8 here
(MoCo-v2 + k-means**, K=3k) 71.4 39.6 15.8 71.1
  • "Aug++" refers to the better augmentations used in SimCLR, taken from the MoCo-v2 repo, but I still only trained for 280 epochs, with three lr-drops as in CMC.
  • There are still further improvements to be made with a MLP or training 800 epochs (I train 280), as done in SimCLR, MoCov2 and SwAV.
  • **MoCo-v2 uses 800 epochs, MLP and cos-lr-schedule. On MoCo-v2 I run k-means (K=3000) on the avg-pooled features (after the MLP-head it's pretty much the same performance) to obtain NMI, aNMI and ARI numbers.
  • Models above use standard torchvision ResNet backbones so loading is now super easy:
import torch, torchvision
model = torchvision.models.resnet50(pretrained=False, num_classes=3000)
ckpt = torch.load('resnet50-10x3k_pp.pth')
model.load_state_dict(ckpt['state_dict'])
pseudolabels = ckpt['L']
  • note on improvement potential: by just using "aug+": I get LP-accuracy of 67.2% after 200 epochs. MoCo-v2 with "aug+" only has 63.4% after 200 epochs.

Clusters that were discovered by our method

Sorted

Imagenet validation images with clusters sorted by imagenet purity

Random

Imagenet validation images with random clusters

The edge-colors encode the true imagenet classes (which are not used for training). You can view all clusters here.

Requirements

  • Python >3.6
  • PyTorch > 1.0
  • CUDA
  • Numpy, SciPy
  • also, see requirements.txt
  • (optional:) TensorboardX

Running our code

Run the self-supervised training of an AlexNet with the command

$./scripts/alexnet.sh

or train a ResNet-50 with

$./scripts/resnet.sh

Note: you need to specify your dataset directory (it expects a format just like ImageNet with "train" and "val" folders). You also need to give the code enough GPUs to allow for storage of activations on the GPU. Otherwise you need to use the CPU variant which is significantly slower.

Full documentation of the unsupervised training code main.py:

usage: main.py [-h] [--epochs EPOCHS] [--batch-size BATCH_SIZE] [--lr LR]
               [--lrdrop LRDROP] [--wd WD] [--dtype {f64,f32}] [--nopts NOPTS]
               [--augs AUGS] [--paugs PAUGS] [--lamb LAMB] [--cpu]
               [--arch ARCH] [--archspec {big,small}] [--ncl NCL] [--hc HC]
               [--device DEVICE] [--modeldevice MODELDEVICE] [--exp EXP]
               [--workers WORKERS] [--imagenet-path IMAGENET_PATH]
               [--comment COMMENT] [--log-intv LOG_INTV] [--log-iter LOG_ITER]

PyTorch Implementation of Self-Label

optional arguments:
  -h, --help            show this help message and exit
  --epochs EPOCHS       number of epochs
  --batch-size BATCH_SIZE
                        batch size (default: 256)
  --lr LR               initial learning rate (default: 0.05)
  --lrdrop LRDROP       multiply LR by 0.1 every (default: 150 epochs)
  --wd WD               weight decay pow (default: (-5)
  --dtype {f64,f32}     SK-algo dtype (default: f64)
  --nopts NOPTS         number of pseudo-opts (default: 100)
  --augs AUGS           augmentation level (default: 3)
  --paugs PAUGS         for pseudoopt: augmentation level (default: 3)
  --lamb LAMB           for pseudoopt: lambda (default:25)
  --cpu                 use CPU variant (slow) (default: off)
  --arch ARCH           alexnet or resnet (default: alexnet)
  --archspec {big,small}
                        alexnet variant (default:big)
  --ncl NCL             number of clusters per head (default: 3000)
  --hc HC               number of heads (default: 1)
  --device DEVICE       GPU devices to use for storage and model
  --modeldevice MODELDEVICE
                        GPU numbers on which the CNN runs
  --exp EXP             path to experiment directory
  --workers WORKERS     number workers (default: 6)
  --imagenet-path IMAGENET_PATH
                        path to folder that contains `train` and `val`
  --comment COMMENT     name for tensorboardX
  --log-intv LOG_INTV   save stuff every x epochs (default: 1)
  --log-iter LOG_ITER   log every x-th batch (default: 200)

Evaluation

Linear Evaluation

We provide the linear evaluation methods in this repo. Simply download the models via . ./scripts/download_models.sh and then either run scripts/eval-alexnet.sh or scripts/eval-resnet.sh.

Pascal VOC

We follow the standard evaluation protocols for self-supervised visual representation learning.

Our extracted pseudolabels

As we show in the paper, the pseudolabels we generate from our training can be used to quickly train a neural network with regular cross-entropy. Moreover they seem to correctly group together similar images. Hence we provide the labels for everyone to use.

AlexNet

You can download the pseudolabels from our best (raw) AlexNet model with 10x3000 clusters here.

ResNet

You can download the pseudolabels from our best ResNet model with 10x3000 clusters here.

Trained models

You can also download our trained models by running

$./scripts/download_models.sh

Use them like this:

import torch
import models
d = torch.load('self-label_models/resnet-10x3k.pth')
m = models.resnet(num_classes = [3000]*10)
m.load_state_dict(d)

d = torch.load('self-label_models/alexnet-10x3k-wRot.pth')
m = models.alexnet(num_classes = [3000]*10)
m.load_state_dict(d)

Reference

If you use this code etc., please cite the following paper:

Yuki M. Asano, Christian Rupprecht and Andrea Vedaldi. "Self-labelling via simultaneous clustering and representation learning." Proc. ICLR (2020)

@inproceedings{asano2020self,
  title={Self-labelling via simultaneous clustering and representation learning},
  author={Asano, Yuki M. and Rupprecht, Christian and Vedaldi, Andrea},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2020},
}
Owner
Yuki M. Asano
I'm an Computer Vision researcher at the University of Amsterdam. Did my PhD at the Visual Geometry Group in Oxford.
Yuki M. Asano
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022