TipToiDog - Tip Toi Dog With Python

Overview

TipToiDog

Was ist dieses Projekt?

Meine 5-jährige Tochter spielt sehr gerne das Quiz Wer kennt alle Hunde. Dabei interessiert sie sich gar nicht so sehr für die Details auf der Rückseite der Quizkarten, sondern hauptsächlich für die Hundenamen. Da sie aber noch nicht lesen kann, kann sie das Quiz nicht alleine machen. Da kam mir die Idee, den TipToi-Stift von Ravensburger dafür einzusetzen, dass sie das Spiel doch alleine spielen kann. Der Stift sollte also die jeweiligen Hundenamen vorlesen. Ich war zuversichtlich, dass es bestimmt paar clevere Leute gibt, die herausgefunden haben, wie man den Stift auch für eigene Projekt einsetzen kann. Und siehe da: Es gibt das geniale Tool tttool. Hiermit konnte ich das Projekt in ca. einem Tag umsetzen. Desweiteren war noch ein bisschen Python-Coding notwendig.

Wie funktioniert der TipToi-Stift überhaupt?

Dies wird hier hervorragend beschrieben und daher erlaube ich mir die Faulheit, die Funktionsweise nicht näher zu erläutern. Es sei nur so viel gesagt: Der Stift arbeitet optisch und erkennt so genannte OID-Codes. Jeder Hundename muss nun also einem OID-Code zu geordnet werden und dann jedem OID-Code noch eine entsprechende Audio-Datei, die den Hundenamen enthält.

Welche Dateien sind für was?

Wenn ihr direkt damit loslegen wollt, das Quiz um die TipToi-Funktion zu erweitern, so braucht ihr lediglich 2 Dateien:

  • dogs.gme: Diese Datei enthält alle Sounddateien und die notwendigen Information für den TipToi, um das Hundequiz auf diesem zu spielen. Hier könnt ihr genauer nachlesen, wenn ihr das Konzept der gme-Datei genauer verstehen wollt. Diese Datei könnt ihr direkt auf den Stift schieben.
  • dogs_box.pdf: In dieser Datei sind die Steuerfelder und alle Hunde-Namen in OID-Code abgebildet, wobei in jedem Codefeld ein Knochen eingebettet ist. Diese Datei muss ausgedruckt werden und dann jeder Knochen auf das entsprechende Hundekarte geklebt werden. Folgendes Bild zeigt 3 Hundekarten mit aufgeklebtem "OID-Knochen":

Die Steuerzeichen (Stop habe ich nicht verwendet), sind auf der Box aufgeklebt:

Beim Drucken liegt leider der Teufel im Detail, [siehe auch hier](https://github.com/entropia/tip-toi-reveng/wiki/Printing). Ich habe es mit meinem Drucker (Brother HL-L2370DN) mit den folgenden Druckeinstellungen gut hinbekommen:
  • Auflösung: HQ1200
  • Druckeinstellungen: Manuell
    • Helligkeit: 0
    • Konstrast: +34
    • Grafikqualität: Text
    • Rest wie vorgegeben

Auf weiße Etiketten spricht mein TipToi hervorragend an. Allerdings hatte ich den Ehrgeiz die Knochen auf transparente Etiketten zu drucken. Das klappt zwar immer noch, aber nicht mehr ganz so gut. Achtung: Der Druck darf nicht skaliert werden!

Wenn ihr das Projekt modifizieren wollt, also vielleicht die Audiodateien verändern wollt, weil sie euch nicht gefallen, oder ihr eigene Hundekarten ergänzen wollt, braucht ihr folgende Dateien, wobei die Reihenfolge, in der ich sie hier nennen, einen gewissen Ablauf beschreibt.

  • dogs.xls: Diese Excel-Tabelle enthält drei Spalten:
    1. Der Hundename in exakter Schreibweise
    2. Ein Dateiname (ohne Leerzeichen), der den Hundenamen repräsentiert.
    3. Die Sprache (repräsentiert durch ein Kürzel), in der später die Audio-Datei für den Hundenamen generiert werden soll
  • gen_dogs.py: Dieses Skript lädt diese Excel-Datei ein und lässt eine Schleife über alle Hundenamen laufen. Hierbei wird mit Hilfe der Google Text-to-Speech-API eine Audiodatei für jeden Hundenamen erzeugt. Desweiteren wird eine entsprechende yaml-Datei erzeugt. Diese Datei benötigt das tttool dann später um zu wissen für welche Ereignisse/Begriffe (hier: die Hundename) welche Aktionen (hier: Abspielen des Hundenamens) generiert und OID codiert werden sollen.
  • hello_dog.ogg: Diese ist eine akustische Begrüßung, die ich eingespielt habe und die ertönt, wenn das Start-Symbol gewählt wird. Sie kann nach Belieben durch eine andere Datei ersetzt werden. Eure Kinder freuen sich bestimmt, wenn sie eure eigene Stimme zu hören bekommen.
  • gen_gme.bat: Dieses Batch-Skript erzeugt aus der yaml-Datei und den Soundfiles die entsprechende gme-Datei
  • gen_oid.bat: Dieses Batch-Skript erzeugt die OID-Codes in einer Tabelle im PDF-Format. Die Größe habe ich entsprechend so gewählt, dass der Knochen auf der Quizkarte nicht zu viel Platz einnimmt. Außerdem habe ich die Pixel-Größe auf 3 (statt wie standardmäßig 2) eingestellt. Dadurch hat mein Stift die Codes überhaupt erst erkannt.
  • overlay.docx: In diesem Word-Dokument sind Hundeknochen tabellarisch im gleichen Raster angeordnet, wie die OID-Codes in dem PDF, was durch das vorherige Skript erstellt worden ist. Daraus muss eine PDF-Datei erstellt werden (auch hier nicht skalieren!)
  • merge_pdf.py: Dieses Python-Skript verschmelzt die dogs.pdf mit der overlay.pdf zu dogs_box.pdf, die dann gemäß obiger Beschreibung ausgedruckt werden kann.

Viel Spaß beim Verwenden und Modifizieren! Über eine Rückmeldung, wenn ihr es erfolgreich umgesetzt habt, würde ich mich freuen!

Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
[Pedestron] Generalizable Pedestrian Detection: The Elephant In The Room. @ CVPR2021

Pedestron Pedestron is a MMdetection based repository, that focuses on the advancement of research on pedestrian detection. We provide a list of detec

Irtiza Hasan 594 Jan 05, 2023
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022