Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Overview

Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy Engelhardt
(* contributed equally)

Code for our MIDL 2021 Special Issue in MedIA journal submission on optimizing the temperature of Bayesian posteriors for inverse tasks in medical imaging. This submission considerably extends a preliminary version of this work presented at the "Fourth Conference on Medical Imaging with Deep Learning" (Tölle et al., 2021).

Abstract

We present Posterior Temperature Optimized Bayesian Inverse Models (POTOBIM), an unsupervised Bayesian approach to inverse problems in medical imaging using mean-field variational inference with a fully tempered posterior. Bayesian methods exhibit useful properties for approaching inverse tasks, such as tomographic reconstruction or image denoising. A suitable prior distribution introduces regularization, which is needed to solve the ill-posed problem and reduces overfitting the data. In practice, however, this often results in a suboptimal posterior temperature, and the full potential of the Bayesian approach is not being exploited. In POTOBIM, we optimize both the parameters of the prior distribution and the posterior temperature with respect to reconstruction accuracy using Bayesian optimization with Gaussian process regression. Our method is extensively evaluated on four different inverse tasks on a variety of modalities with images from public data sets and we demonstrate that an optimized posterior temperature outperforms both non-Bayesian and Bayesian approaches without temperature optimization. The use of an optimized prior distribution and posterior temperature leads to improved accuracy and uncertainty estimation and we show that it is sufficient to find these hyperparameters per task domain. Well-tempered posteriors yield calibrated uncertainty, which increases the reliability in the predictions.

BibTeX

MedIA 2021

under review

MIDL 2021

@inproceedings{toelle2021mean,
  title={A Mean-Field Variational Inference Approach to Deep Image Prior for Inverse Problems in Medical Imaging},
  author={T{\"o}lle, Malte and Laves, Max-Heinrich and Schlaefer, Alexander},
  booktitle={Medical Imaging with Deep Learning},
  year={2021},
}

See https://github.com/maltetoelle/mfvi-dip for our initial MIDL2021 code repository.

Contact

Max-Heinrich Laves
[email protected]
@MaxLaves

Institute of Medical Technology and Intelligent Systems
Hamburg University of Technology
Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany

Owner
Artificial Intelligence in Cardiovascular Medicine (AICM)
Repos of the AICM-Group, Heidelberg University Hospital
Artificial Intelligence in Cardiovascular Medicine (AICM)
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
[SIGGRAPH 2021 Asia] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning

DeepVecFont This is the official Pytorch implementation of the paper: Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing High-quality Vector Fonts

Yizhi Wang 146 Dec 18, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022