本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

Overview

说明

本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

python依赖

tf2.3 、cv2、numpy、pyqt5

pyqt5安装

pip install PyQt5
pip install PyQt5-tools

使用

程序入口为main文件,pyqt5的界面为使用qt designer生成的。界面中核心的是4个控件,视频控件、计数控件、历史记录控件和分类结果对话框。 (在window.py中的class Ui_MainWindow中setupUi函数中的最后,做了计数控件、历史记录控件和模型、标签的加载)

视频控件

使用cv2抓取摄像头视频,并显示在videoLayout中的label控件label上。(名字就叫label..)(在main函数中使用语句 camera = Camera(1) # 0为笔记本自带摄像头 1为USB摄像头 抓取视频画面。) 以下是Ui_MainWindow类中与视频显示相关的部分:(如果部署在树莓派上,此处需要改动)

class Ui_MainWindow(object):

    def __init__(self, camera):
        self.camera = camera
        # Create a timer.
        self.timer = QTimer()
        self.timer.timeout.connect(self.nextFrameSlot)
        self.start()

    def start(self):
        self.camera.openCamera()
        self.timer.start(1000. / 24)

    def nextFrameSlot(self):
        rval, frame = self.camera.vc.read()
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        image = QImage(frame, frame.shape[1], frame.shape[0], QImage.Format_RGB888)
        pixmap = QPixmap.fromImage(image)
        self.label.setPixmap(pixmap)

计数控件

读取保存在static/CSV/count.csv文件中的分类次数,并显示在countLayout中的label控件count上。初始状态的static/CSV/count.csv文件为只有一个0。

历史记录控件

读取保存在static/CSV/history.csv文件中的历史记录(第一列为分类结果,第二列为照片路径),并显示在listLayout中的QListWidget控件listWidget上。初始状态的static/CSV/history.csv文件为空。 这里只显示了最近15条记录,代码在csv_utils.py中的read_history_csv函数。

分类结果对话框

触发次对话框的条件是点击界面上的pushButton(绑定代码位于window.py中的class Ui_MainWindow中setupUi函数),触发的函数为class Ui_MainWindow中的show_dialog函数。如果部署在树莓派上可改为由距离传感器触发。

  self.pushButton.clicked.connect(self.show_dialog)

这部分的核心就是show_dialog函数。要实现拍照,调用分类模型,在对话框关闭后还实现了主界面计数控件和历史记录控件的更新。(耦合性较大..) 文件的保存方面只是使用了CSV文件来保存计数、结果和照片路径。(初始状态的static/CSV/count.csv文件为只有一个0。初始状态的static/CSV/history.csv文件为空。)

    def show_dialog(self):
        count_csv_path = "static/CSV/count.csv"  # 计数
        history_csv_path = "static/CSV/history.csv"  # 历史记录
        image_path = "static/photos/"  # 照片目录
        classification = "test"  # 测试用的

        timeout = 4 # 对话框停留时间
        ret, frame = self.camera.vc.read()  # 拍照
        self.history_photo_num = self.history_photo_num + 1  # 照片自增命名
        image_path = image_path + str(self.history_photo_num) + ".jpg"  # 保存照片的路径
        cv2.imwrite(image_path, frame)  # 保存
        # time.sleep(1)

        image = utils.load_image(image_path)
        classify_model = self.classify_model  # 模型、标签的初始化在setupUi函数最后
        label_to_content = self.label_to_content
        prediction, label = classify_image(image, classify_model) # 调用模型

        print('-' * 100)
        print(f'Test one image: {image_path}')
        print(f'classification: {label_to_content[str(label)]}\nconfidence: {prediction[0, label]}')
        print('-' * 100)

        classification = str(label_to_content[str(label)])  # 分类结果
        confidence = str(f'{prediction[0, label]}')  # 置信度
        confidence = confidence[0:5]  # 保留三位小数
        self.dialog = Dialog(timeout=timeout, classification=classification, confidence=confidence)  # 传入结果和置信度
        self.dialog.show()
        self.dialog.exec() # 对话框退出

        # 更新历史记录中count数目
        count_list = read_count_csv(filename=count_csv_path)
        count = int(count_list[0]) + 1
        self.count.setText(str(count))
        write_count_csv(filename=count_csv_path, count=count)

        # 更新历史记录
        write_history_csv(history_csv_path, classification=classification, photo_path=image_path)
        self.listWidget.clear()
        history_list = read_history_csv(history_csv_path)
        for record in history_list:  # 每次都是全部重新加载,效率较低...
            item = QtWidgets.QListWidgetItem(QtGui.QIcon(record[1]), record[0])  # 0为类别,1为图片路径
            self.listWidget.addItem(item)
Owner
just swag
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022