Aggragrating Nested Transformer Official Jax Implementation

Overview

Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet benchmark. NesT can be scaled to small datasets to match convnet accuracy.

This is not an officially supported Google product.

Pretrained Models and Results

Model Accuracy Checkpoint path
Nest-B 83.8 gs://gresearch/nest-checkpoints/nest-b_imagenet
Nest-S 83.3 gs://gresearch/nest-checkpoints/nest-s_imagenet
Nest-T 81.5 gs://gresearch/nest-checkpoints/nest-t_imagenet

Note: Accuracy is evaluated on the ImageNet2012 validation set.

Tensorbord.dev

See ImageNet training logs at Tensorboard.dev.

Colab

Colab is available for test: https://colab.sandbox.google.com/github/google-research/nested-transformer/blob/main/colab.ipynb

Instruction on Image Classification

Environment setup

virtualenv -p python3 --system-site-packages nestenv
source nestenv/bin/activate

pip install -r requirements.txt

Evaluate on ImageNet

At the first time, download ImageNet following tensorflow_datasets instruction from command lines. Optionally, download all pre-trained checkpoints

bash ./checkpoints/download_checkpoints.sh

Run the evaluation script to evaluate NesT-B.

python main.py --config configs/imagenet_nest.py --config.eval_only=True \
  --config.init_checkpoint="./checkpoints/nest-b_imagenet/ckpt.39" \
  --workdir="./checkpoints/nest-t_imagenet_eval"

Train on ImageNet

The default configuration trains NesT-B on TPUv2 8x8 with per device batch size 16.

python main.py --config configs/imagenet_nest.py --jax_backend_target=<TPU_IP_ADDRESS> --jax_xla_backend="tpu_driver" --workdir="./checkpoints/nest-b_imagenet"

Note: See jax/cloud_tpu_colab for info about TPU_IP_ADDRESS.

Train NesT-T on 8 GPUs.

python main.py --config configs/imagenet_nest_tiny.py --workdir="./checkpoints/nest-t_imagenet_8gpu"

The codebase does not support multi-node GPU training (>8 GPUs). The models reported in our paper is trained using TPU with 1024 total batch size.

Train on CIFAR

# Recommend to train on 2 GPUs. Training NesT-T can use 1 GPU.
CUDA_VISIBLE_DEVICES=0,1 python  main.py --config configs/cifar_nest.py --workdir="./checkpoints/nest_cifar"

Cite

@inproceedings{zhang2021aggregating,
  title={Aggregating Nested Transformers},
  author={Zizhao Zhang and Han Zhang and Long Zhao and Ting Chen and Tomas Pfister},
  booktitle={arXiv preprint arXiv:2105.12723},
  year={2021}
}
Owner
Google Research
Google Research
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022