PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

Overview

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE is a new algorithm for ranking neurons in a CNN architecture in order of importance towards the final classification. PCACE is a statistical method combining Alternating Condition Expectation with Principal Component Analysis to find the maximal correlation coefficient between a hidden neuron and the final class score. This yields a rigorous and standardized method for quantifying the relevance of each neuron towards the final model classification.

Summary of Usage

  1. pcace_resnet_18.py: code for the PCACE algorithm in the ResNet-18 architecture. Uses PyTorch to load the model and requires the ACE package. Caps indicate variables changeable by the user: NUM_IMAGES: the number of input images for PCACE. CLASS: the class to which the input images belong to. LAYER_NAME: name of the convolutional layer to which we apply PCACE. Follows the structure layerx[y].convz. NUM_CHANNELS: number of channels in LAYER_NAME. SIZE: number of pixels in the activation maps of LAYER_NAME. SIZE_X, SIZE_Y: height and width of the activation maps. Must have SIZE = SIZE_X*SIZE_Y. CLASS_IDX: before the softmax, which index corresponds to the class score (class of the set of input images). PCA_COMP: number of components to which PCA wishes to be reduced to. After the algorithm runs, it provides an array results with the PCACE values of all channels, which can then be sorted.

  2. pcace_vgg_16.py: same code an functionality as pcace_resnet_18.py but in the VGG-16 architecture instead of ResNet-18. Computes the PCACE values for any layer in the VGG-16 architecture.

  3. activation_maximization.py: code to visualize the filter activation maximization images with VGG-16 following the code from https://github.com/keisen/tf-keras-vis. Uses Keras to load the model and requires teh tf-keras-vis package. Caps indicate variables changeable by the user: LAYER_NAME: where is the channel whose feature visualization we are trying to see. FILTER_NUMBER: which channel within that layer.

  4. visualize_act_maps_resnet_18.py: code to visualize the activation maps of the top PCACE channels with ResNet-18. As in pcace_resnet_18.py, it uses PyTorch to load the model. Caps indicate variables changeable by the user: LAYER_NAME: name of the convolutional layer to which we apply PCACE. Follows the structure layerx[y].convz. ORDER: an array containing the PCACE channels sorted from lowest to highest value. The good_urls refer to a list containing the URLs of the images that one wishes to visualize.

  5. visualize_act_maps_vgg_16.py: same functionality as in the visualize_act_maps_resnet_18.py code (i.e., visualize the activation maps of the top PCACE channels), but in the VGG-16 architecture instead of ResNet-18.

  6. visualizing_cam.py: producing CAM visualizations with ResNet-18 following the code from https://github.com/zhoubolei/CAM. Uses PyTorch to load the model. Returns the CAM visualization of the input image (in this case, given with a URL).

  7. london_kdd_examples_slevel.csv: The .csv file contains metadata for the 300 street level images we used in our experiments. In our experiments we used images from Google Street View. More information on these images and how to use them are available from here: https://developers.google.com/maps/documentation/streetview/overview. gsv_panoid: correspods to the 'pano' parameter, which is a specific panorama ID for the image. gsv_lat, gsv_lng: corresponds the the location coordinates for the image. Both gsv_panoid and gsv_lat, gsv_lng parameters can be used to access the images used in our experiments.

ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022