PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

Overview

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

The implementation is based on SIGGRAPH Aisa'20.

Dependencies

  • Python 3.7
  • Ubuntu 18.04 (The system should run on other Ubuntu versions and Windows, however not tested.)
  • RBDL: Rigid Body Dynamics Library (https://rbdl.github.io/)
  • PyTorch 1.8.1 with GPU support (cuda 10.2 is tested to work)
  • For other python packages, please check requirements.txt

Installation

  • Download and install Python binded RBDL from https://github.com/rbdl/rbdl

  • Install Pytorch 1.8.1 with GPU support (https://pytorch.org/) (other versions should also work but not tested)

  • Install python packages by:

      pip install -r requirements.txt
    

How to Run on the Sample Data

We provide a sample data taken from DeepCap dataset CVPR'20. To run the code on the sample data, first go to physcap_release directory and run:

python pipeline.py --contact_estimation 0 --floor_known 1 --floor_frame  data/floor_frame.npy  --humanoid_path asset/physcap.urdf --skeleton_filename asset/physcap.skeleton --motion_filename data/sample.motion --contact_path data/sample_contacts.npy --stationary_path data/sample_stationary.npy --save_path './results/'

To visualize the prediction, run:

python visualizer.py --q_path ./results/PhyCap_q.npy

To run PhysCap with its full functionality, the floor position should be given as 4x4 matrix (rotation and translation). In case you don't know the floor position, you can still run PhysCap with "--floor_known 0" option:

python pipeline.py --contact_estimation 0 --floor_known 0  --humanoid_path asset/physcap.urdf --skeleton_filename asset/physcap.skeleton --motion_filename data/sample.motion --save_path './results/'

How to Run on Your Data

  1. Run Stage I:

    we employ VNect for the stage I of PhysCap pipeline. Please install the VNect C++ library and use its prediction to run PhysCap. When running VNect, please replace "default.skeleton" with "physcap.skeleton" in asset folder that is compatible with PhysCap skeletion definition (physcap.urdf). After running VNect on your sequence, the predictions (motion.motion and ddd.mdd) will be saved under the specified folder. For this example, we assuem the predictions are saved under "data/VNect_data" folder.

  2. Run Stage II and III:

    First, run the following command to apply preprocessing on the 2D keypoints:

     python process_2Ds.py --input ./data/VNect_data/ddd.mdd --output ./data/VNect_data/ --smoothing 0
    

    The processed keypoints will be stored as "vnect_2ds.npy". Then run the following command to run Stage II and III:

     python pipeline.py --contact_estimation 1 --vnect_2d_path ./data/VNect_data/vnect_2ds.npy --save_path './results/' --floor_known 0 --humanoid_path asset/physcap.urdf --skeleton_filename asset/physcap.skeleton --motion_filename ./data/VNect_data/motion.motion --contact_path results/contacts.npy --stationary_path results/stationary.npy  
    

    In case you know the exact floor position, you can use the options --floor_known 1 --floor_frame /Path/To/FloorFrameFile

    To visualize the results, run:

     python visualizer.py --q_path ./results/PhyCap_q.npy
    

License Terms

Permission is hereby granted, free of charge, to any person or company obtaining a copy of this software and associated documentation files (the "Software") from the copyright holders to use the Software for any non-commercial purpose. Publication, redistribution and (re)selling of the software, of modifications, extensions, and derivates of it, and of other software containing portions of the licensed Software, are not permitted. The Copyright holder is permitted to publically disclose and advertise the use of the software by any licensee.

Packaging or distributing parts or whole of the provided software (including code, models and data) as is or as part of other software is prohibited. Commercial use of parts or whole of the provided software (including code, models and data) is strictly prohibited. Using the provided software for promotion of a commercial entity or product, or in any other manner which directly or indirectly results in commercial gains is strictly prohibited.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Citation

If the code is used, the licesnee is required to cite the use of VNect and the following publication in any documentation or publication that results from the work:

@article{
	PhysCapTOG2020,
	author = {Shimada, Soshi and Golyanik, Vladislav and Xu, Weipeng and Theobalt, Christian},
	title = {PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time},
	journal = {ACM Transactions on Graphics}, 
	month = {dec},
	volume = {39},
	number = {6}, 
	articleno = {235},
	year = {2020}, 
	publisher = {ACM}, 
	keywords = {physics-based, 3D, motion capture, real time}
} 
Owner
soratobtai
soratobtai
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Ian Covert 130 Jan 01, 2023
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023