FcaNet: Frequency Channel Attention Networks

Related tags

Deep LearningFcaNet
Overview

FcaNet: Frequency Channel Attention Networks

PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks".

alt text

Simplest usage

Models pretrained on ImageNet can be simply accessed by (without any configuration or installation):

model = torch.hub.load('cfzd/FcaNet', 'fca34' ,pretrained=True)
model = torch.hub.load('cfzd/FcaNet', 'fca50' ,pretrained=True)
model = torch.hub.load('cfzd/FcaNet', 'fca101' ,pretrained=True)
model = torch.hub.load('cfzd/FcaNet', 'fca152' ,pretrained=True)

Install

Please see INSTALL.md

Models

Classification models on ImageNet

Due to the conversion between FP16 training and the provided FP32 models, the evaluation results are slightly different(max -0.06%/+0.05%) compared with the reported results.

Model Reported Evaluation Results Link
FcaNet34 75.07 75.02 GoogleDrive/BaiduDrive(code:m7v8)
FcaNet50 78.52 78.57 GoogleDrive/BaiduDrive(code:mgkk)
FcaNet101 79.64 79.63 GoogleDrive/BaiduDrive(code:8t0j)
FcaNet152 80.08 80.02 GoogleDrive/BaiduDrive(code:5yeq)

Detection and instance segmentation models on COCO

Model Backbone AP AP50 AP75 Link
Faster RCNN FcaNet50 39.0 61.1 42.3 GoogleDrive/BaiduDrive(code:q15c)
Faster RCNN FcaNet101 41.2 63.3 44.6 GoogleDrive/BaiduDrive(code:pgnx)
Mask RCNN Fca50 det
Fca50 seg
40.3
36.2
62.0
58.6
44.1
38.1
GoogleDrive/BaiduDrive(code:d9rn)

Training

Please see launch_training_classification.sh and launch_training_detection.sh for training on ImageNet and COCO, respectively.

Testing

Please see launch_eval_classification.sh and launch_eval_detection.sh for testing on ImageNet and COCO, respectively.

FAQ

Since the paper is uploaded to arxiv, many academic peers ask us: the proposed DCT basis can be viewed as a simple tensor, then how about learning the tensor directly? Why use DCT instead of learnable tensor? Learnable tensor can be better than DCT.

Our concrete answer is: the proposed DCT is better than the learnable way, although it is counter-intuitive.

Method ImageNet Top-1 Acc Link
Learnable tensor, random initialization 77.914 GoogleDrive/BaiduDrive(code:p2hl)
Learnable tensor, DCT initialization 78.352 GoogleDrive/BaiduDrive(code:txje)
Fixed tensor, random initialization 77.742 GoogleDrive/BaiduDrive(code:g5t9)
Fixed tensor, DCT initialization (Ours) 78.574 GoogleDrive/BaiduDrive(code:mgkk)

To verify this results, one can select the cooresponding types of tensor in the L73-L83 in model/layer.py, uncomment it and train the whole network.

TODO

  • Object detection models
  • Instance segmentation models
  • Fix the incorrect results of detection models
  • Make the switching between configs more easier
Comments
  • About the performance on cifar10 or cifar100.

    About the performance on cifar10 or cifar100.

    Thanks for your work!!

    Have you tried using fcanet to train classification tasks on cifar10 or cifar100?. If you have tried, what is the frequency components setting?

    opened by NNNNAI 14
  • 有关self.dct_h和self.dct_w的设置?

    有关self.dct_h和self.dct_w的设置?

    在这个类中MultiSpectralAttentionLayer有以下部分。 if h != self.dct_h or w != self.dct_w: x_pooled = torch.nn.functional.adaptive_avg_pool2d(x, (self.dct_h, self.dct_w)) # If you have concerns about one-line-change, don't worry. :) # In the ImageNet models, this line will never be triggered. # This is for compatibility in instance segmentation and object detection.

    如果我的任务是目标检测,我该怎么设置self.dct_h和self.dct_w?

    opened by XFR1998 6
  • 2d dct FLOPs computing method

    2d dct FLOPs computing method

    Hi, I noticed that in your paper you computed FCAnet model FLOPs.

    I wonder how do you compute the FLOPs of 2d dct? Could you provide your formula or code?

    Thanks!

    opened by TianhaoFu 5
  • What's the difference between FcaBottleneck and FcaBasicBlock ?

    What's the difference between FcaBottleneck and FcaBasicBlock ?

    As in your code, the FcaBottleneck expansion is 4 and FcaBasicBlock is 1, FcaBottleneck has one more layer of convolution than FcaBasicBlock, so how should I choose which module to use ?

    opened by meiguoofa 3
  • 关于通道分组

    关于通道分组

    你好,我是一名深度学习初学者,我添加了两个FCA模块使原模型的mIOU提升了2.3,效果很好; 然而对于通道分组,我有一些其他的看法; 如果分组的通道中表示不同的信息,每个分组再使用不同的频率分量,这似乎会造成更多的信息丢失吧,因为DCT可以看作是一种加权和,可以从论文中看到除了GAP是对每个通道上像素的一视同仁,其他的都是对空间上某一个或几个部分注意的更多,这显然是存在偏颇的,这似乎也能解释为什么单个频率分量实验中GAP的效果最好;在这种情况下,对通道进行分组,或许会造成更多的信息损失? 我仔细思考了下,我认为FCAwork的原因主要是存在通道冗余以及DCT加权形成的一种“互补” 因为存在通道冗余,进行通道分组时可能某些分组中的信息相近,并且这些分组的权重是“互补”的,比如一个权重矩阵更注重左半边,一个更注重右半边这样。似乎模块学习这种‘稀疏’的关系效果会更好。 可以认为FAC比SE更充分的使用了冗余的通道。 考虑了两个实验来证明, 不对减小输入的通道数,将FCA与原模型或是SE进行对比,当通道减少到一定程度时,信息没有那么冗余,这时应该会有大量的信息丢失,精度相较于原模型更低; 关于频率分量的选择,选取某些“对称”“互补”的权重矩阵,而不是通过单个频率分量的性能的来选择,并且去除那些"混乱”的权重矩阵,因为单个频率分量证明这种混乱的权重并没有简单分块的效果好 另外可以在大通道数使用大的分组,在小通道数使用小的分组,来检验是否会获得更好的性能

    不能完全表达我的意思,如有错误,恳请指出!

    opened by Asthestarsfalll 2
  • 跑您的模型的时候遇到的一些问题

    跑您的模型的时候遇到的一些问题

    您好,非常欣赏您的idea,所以尝试跑一下您的分类模型。 我下载了ImageNet2012数据集之后,尝试启动您的模型,遇到了以下问题,想请教一下是否我的哪些设置出错了?

    错误信息如下: Traceback (most recent call last): File "main.py", line 643, in main() File "main.py", line 389, in main avg_train_time = train(train_loader, model, criterion, optimizer, epoch, logger, scheduler) File "main.py", line 471, in train prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) File "main.py", line 631, in accuracy correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.

    opened by LihuiNb 2
  • selecting frequency components

    selecting frequency components

    Hi, I want to know how did you select the frequency components like Figure6? I want to select 1, 3, 6, 10 frequencies like zigzag DCT.

    And, I want to know the meaning of the numbers in the layer.py.

    num_freq = int(method[3:])
    if 'top' in method:
        all_top_indices_x = [0,0,6,0,0,1,1,4,5,1,3,0,0,0,3,2,4,6,3,5,5,2,6,5,5,3,3,4,2,2,6,1]
        all_top_indices_y = [0,1,0,5,2,0,2,0,0,6,0,4,6,3,5,2,6,3,3,3,5,1,1,2,4,2,1,1,3,0,5,3]
        mapper_x = all_top_indices_x[:num_freq]
        mapper_y = all_top_indices_y[:num_freq]
    elif 'low' in method:
        all_low_indices_x = [0,0,1,1,0,2,2,1,2,0,3,4,0,1,3,0,1,2,3,4,5,0,1,2,3,4,5,6,1,2,3,4]
        all_low_indices_y = [0,1,0,1,2,0,1,2,2,3,0,0,4,3,1,5,4,3,2,1,0,6,5,4,3,2,1,0,6,5,4,3]
        mapper_x = all_low_indices_x[:num_freq]
        mapper_y = all_low_indices_y[:num_freq]
    elif 'bot' in method:
        all_bot_indices_x = [6,1,3,3,2,4,1,2,4,4,5,1,4,6,2,5,6,1,6,2,2,4,3,3,5,5,6,2,5,5,3,6]
        all_bot_indices_y = [6,4,4,6,6,3,1,4,4,5,6,5,2,2,5,1,4,3,5,0,3,1,1,2,4,2,1,1,5,3,3,3]
        mapper_x = all_bot_indices_x[:num_freq]
        mapper_y = all_bot_indices_y[:num_freq]
    else:
        raise NotImplementedError
    return mapper_x, mapper_y
    
    opened by InukKang 1
  • 不大一致

    不大一致

    在layer.py中有: class MultiSpectralAttentionLayer(torch.nn.Module):中有 self.dct_layer = MultiSpectralDCTLayer(dct_h, dct_w, mapper_x, mapper_y, channel) 可见dct_h在前, dct_w在后 就是h在前,w在后 而在class MultiSpectralDCTLayer(nn.Module):中 def init(self, width, height, mapper_x, mapper_y, channel): 可见 width在前,height在后,就是w在前,h在后 请问这有什么说处么?我晕了

    opened by desertfex 1
  • dct_h and dct_w

    dct_h and dct_w

    How can I set dct_h and dct_w if i want to add FCA layer into another model. My feature maps for the layer I want to inset Fca layer are 160x160, 80x80, 40x40, 20x20

    Please advise.

    opened by myasser63 5
  • 想请问一下代码中bot是怎么选取的代表什么意思

    想请问一下代码中bot是怎么选取的代表什么意思

    elif 'bot' in method:
        all_bot_indices_x = [6,1,3,3,2,4,1,2,4,4,5,1,4,6,2,5,6,1,6,2,2,4,3,3,5,5,6,2,5,5,3,6]
        all_bot_indices_y = [6,4,4,6,6,3,1,4,4,5,6,5,2,2,5,1,4,3,5,0,3,1,1,2,4,2,1,1,5,3,3,3]
    
    opened by Liutingjin 1
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

0 May 06, 2022
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022