Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers: ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design Pretrained Models on ImageNet We provide pretrained ShuffleNet-v2 models on ImageNet,which achieve slightly better accuracy rates than the original ones reported in the paper. The top-1/5 accuracy rates by using single center crop (crop size: 224x224, image size: 256xN): Network Top-1 Top-5 Top-1(reported in the paper) ShuffleNet-v2-x0.5 60.646 81.696 60.300 ShuffleNet-v2-x1 69.402 88.374 69.400 Evaluate Models python eval.py -a shufflenetv2 --width_mult=0.5 --evaluate=./shufflenetv2_x0.5_60.646_81.696.pth.tar ./ILSVRC2012/ python eval.py -a shufflenetv2 --width_mult=1.0 --evaluate=./shufflenetv2_x1_69.390_88.412.pth.tar ./ILSVRC2012/ Version: Python2.7 torch0.3.1 torchvision0.2.1 Dataset prepare Refer to https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md#download-the-imagenet-dataset
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).
Overview
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.
DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .
PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,
Make your master artistic punk avatar through machine learning world famous paintings.
Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP
scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module
AI grand challenge 2020 Repo (Speech Recognition Track)
KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.
Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run
BBScan py3 - BBScan py3 With Python
BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo
This repo is duplication of jwyang/faster-rcnn.pytorch
Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS
Caffe-like explicit model constructor. C(onfig)Model
cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity
A keras implementation of ENet (abandoned for the foreseeable future)
ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t
A simple pytorch pipeline for semantic segmentation.
SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.
SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.
Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)
Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio
An University Project of Quera Web Crawling.
WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization
Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in