EfficientNetV2-with-TPU - Cifar-10 case study

Overview

EfficientNetV2-with-TPU

EfficientNet

EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisiensi parameter yang lebih baik dari model sebelumnya . Untuk mengembangkan model ini, penulis menggunakan kombinasi pencarian dan penskalaan arsitektur saraf yang sadar pelatihan , untuk bersama-sama mengoptimalkan kecepatan pelatihan. Model dicari dari ruang pencarian yang diperkaya dengan operasi baru seperti Fused-MBConv .

Secara arsitektur perbedaan utama adalah:

  • EfficientNetV2 secara ekstensif menggunakan MBConv dan fusi-MBConv yang baru ditambahkan di lapisan awal.
  • EfficientNetV2 lebih memilih rasio ekspansi yang lebih kecil untuk MBConv karena rasio ekspansi yang lebih kecil cenderung memiliki lebih sedikit overhead akses memori.
  • EfficientNetV2 lebih menyukai ukuran kernel 3x3 yang lebih kecil, tetapi menambahkan lebih banyak lapisan untuk mengkompensasi bidang reseptif yang berkurang yang dihasilkan dari ukuran kernel yang lebih kecil.
  • EfficientNetV2 sepenuhnya menghapus tahap stride-1 terakhir di EfficientNet asli, mungkin karena ukuran parameternya yang besar dan overhead akses memori

Note

Model Size acc-val top-5 acc-test weight
EfficientNetV2B0 224 90.68 99.76 89.86 imagenet
EfficientNetV2B1 240 90.76 99.78 90.07 imagenet
EfficientNetV2B2 260 87.08 99.48 86.85 imagenet
EfficientNetV2B3 300 90.38 99.80 89.29 imagenet
EfficientNetV2T 320 92.80 99.86 92.53 imagenet
EfficientNetV2S 384 89.94 99.74 89.27 imagenet
EfficientNetV2M 480 91.86 99.70 90.53 imagenet
EfficientNetV2L 480 93.10 99.80 92.38 imagenet
EfficientNetV2XL 512 93.24 99.72 93.41 imagenet21K-ft1k
  • Train 90%(45000rb)

  • Validation 10%(5000rb)

  • Test(10000rb)

  • Epochs = 25

  • WeightDecay = 1e-5

  • Batchsize = 16 * 8(strategy.num_replicas_in_sync)

  • optimizers adabelief dengan LearningRateSchduler(Triangular2CyclicalLearningRate) dan Rectified = True(mencegah overshoot)

  • cifar-10 tidak di sarankan untuk di ubah ukuran nya, saya mengubah ukuran nya hanya untuk milihat apakah bagus/tidak efficientnetv2 saat mempelajari cifar-10

Referensi

Owner
Sultan syach
Sultan syach
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023