EfficientNetV2-with-TPU - Cifar-10 case study

Overview

EfficientNetV2-with-TPU

EfficientNet

EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisiensi parameter yang lebih baik dari model sebelumnya . Untuk mengembangkan model ini, penulis menggunakan kombinasi pencarian dan penskalaan arsitektur saraf yang sadar pelatihan , untuk bersama-sama mengoptimalkan kecepatan pelatihan. Model dicari dari ruang pencarian yang diperkaya dengan operasi baru seperti Fused-MBConv .

Secara arsitektur perbedaan utama adalah:

  • EfficientNetV2 secara ekstensif menggunakan MBConv dan fusi-MBConv yang baru ditambahkan di lapisan awal.
  • EfficientNetV2 lebih memilih rasio ekspansi yang lebih kecil untuk MBConv karena rasio ekspansi yang lebih kecil cenderung memiliki lebih sedikit overhead akses memori.
  • EfficientNetV2 lebih menyukai ukuran kernel 3x3 yang lebih kecil, tetapi menambahkan lebih banyak lapisan untuk mengkompensasi bidang reseptif yang berkurang yang dihasilkan dari ukuran kernel yang lebih kecil.
  • EfficientNetV2 sepenuhnya menghapus tahap stride-1 terakhir di EfficientNet asli, mungkin karena ukuran parameternya yang besar dan overhead akses memori

Note

Model Size acc-val top-5 acc-test weight
EfficientNetV2B0 224 90.68 99.76 89.86 imagenet
EfficientNetV2B1 240 90.76 99.78 90.07 imagenet
EfficientNetV2B2 260 87.08 99.48 86.85 imagenet
EfficientNetV2B3 300 90.38 99.80 89.29 imagenet
EfficientNetV2T 320 92.80 99.86 92.53 imagenet
EfficientNetV2S 384 89.94 99.74 89.27 imagenet
EfficientNetV2M 480 91.86 99.70 90.53 imagenet
EfficientNetV2L 480 93.10 99.80 92.38 imagenet
EfficientNetV2XL 512 93.24 99.72 93.41 imagenet21K-ft1k
  • Train 90%(45000rb)

  • Validation 10%(5000rb)

  • Test(10000rb)

  • Epochs = 25

  • WeightDecay = 1e-5

  • Batchsize = 16 * 8(strategy.num_replicas_in_sync)

  • optimizers adabelief dengan LearningRateSchduler(Triangular2CyclicalLearningRate) dan Rectified = True(mencegah overshoot)

  • cifar-10 tidak di sarankan untuk di ubah ukuran nya, saya mengubah ukuran nya hanya untuk milihat apakah bagus/tidak efficientnetv2 saat mempelajari cifar-10

Referensi

Owner
Sultan syach
Sultan syach
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022