[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

Related tags

Deep LearningSGNAS
Overview

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator

Overview

This is the entire codebase for the paper Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator

In one-shot NAS, sub-networks need to be searched from the supernet to meet different hardware constraints. However, the search cost is high and N times of searches are needed for N different constraints. In this work, we propose a novel search strategy called architecture generator to search sub-networks by generating them, so that the search process can be much more efficient and flexible. With the trained architecture generator, given target hardware constraints as the input, N good architectures can be generated for N constraints by just one forward pass without researching and supernet retraining. Moreover, we propose a novel single-path supernet, called unified supernet, to further improve search efficiency and reduce GPU memory consumption of the architecture generator. With the architecture generator and the unified supernet, we pro- pose a flexible and efficient one-shot NAS framework, called Searching by Generating NAS (SGNAS). The search time of SGNAS for N different hardware constraints is only 5 GPU hours, which is 4N times faster than previous SOTA single-path methods. The top1-accuracy of SGNAS on ImageNet is 77.1%, which is comparable with the SOTAs.

sgnas_framework

Model Zoo

Model FLOPs (M) Param (M) Top-1 (%) Weights
SGNAS-A 373 6.0 77.1 Google drive
SGNAS-B 326 5.5 76.8 Google drive
SGNAS-C 281 4.7 76.2 Google drive

Requirements

pip3 install -r requirements.txt
  • [Optional] Transfer Imagenet dataset into LMDB format by utils/folder2lmdb.py
    • With LMDB format, you can speed up entire training process(30 mins per epoch with 4 GeForce GTX 1080 Ti)

Getting Started

Search

Training Unified Supernet

  • For Imagenet training, set the config file ./config_file/imagenet_config.yml. For cifar100 training, set the config file ./config_file/config.yml.
  • Set the hyperparameter warmup_epochs in the config file to specific the epochs for training the unified supernet.
python3 search.py --cfg [CONFIG_FILE] --title [EXPERIMENT_TITLE]

Training Architecture Generator

  • For Imagenet training, set the config file ./config_file/imagenet_config.yml. For cifar100 training, set the config file ./config_file/config.yml.
  • Set the hyperparameter warmup_epochs in the config file to skip the supernet training, and set the hyperparameter search_epochs to specific the epochs for training the architecture generator.
python3 search.py --cfg [CONFIG_FILE] --title [EXPERIMENT_TITLE]

Train From Scratch

CIFAR10 or CIFAR100

  • Set train_portion in ./config_file/config.yml to 1
python3 train_cifar.py --cfg [CONFIG_FILE] -- flops [TARGET_FLOPS] --title [EXPERIMENT_TITLE]

ImageNet

  • Set the target flops and correspond config file path in run_example.sh
bash ./run_example.sh

Validate

ImageNet

  • SGNAS-A
python3 validate.py [VAL_PATH] --checkpoint [CHECKPOINT_PATH] --config_path [CONFIG_FILE] --target_flops 365 --se True --activation hswish
  • SGNAS-B
python3 validate.py [VAL_PATH] --checkpoint [CHECKPOINT_PATH] --config_path [CONFIG_FILE] --target_flops 320 --se True --activation hswish
  • SGNAS-C
python3 validate.py [VAL_PATH] --checkpoint [CHECKPOINT_PATH] --config_path [CONFIG_FILE] --target_flops 275 --se True --activation hswish

Reference

Citation

@InProceedings{sgnas,
author = {Sian-Yao Huang and Wei-Ta Chu},
title = {Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator},
booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition},
year = {2021}
}
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022