A Python package for generating concise, high-quality summaries of a probability distribution

Overview

GoodPoints

A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints is a collection of tools for compressing a distribution more effectively than independent sampling:

  • Given an initial summary of n input points, kernel thinning returns s << n output points with comparable integration error across a reproducing kernel Hilbert space
  • Compress++ reduces the runtime of generic thinning algorithms with minimal loss in accuracy

Installation

To install the goodpoints package, use the following pip command:

pip install goodpoints

Getting started

The primary kernel thinning function is thin in the kt module:

from goodpoints import kt
coreset = kt.thin(X, m, split_kernel, swap_kernel, delta=0.5, seed=123, store_K=False)
    """Returns kernel thinning coreset of size floor(n/2^m) as row indices into X
    
    Args:
      X: Input sequence of sample points with shape (n, d)
      m: Number of halving rounds
      split_kernel: Kernel function used by KT-SPLIT (typically a square-root kernel, krt);
        split_kernel(y,X) returns array of kernel evaluations between y and each row of X
      swap_kernel: Kernel function used by KT-SWAP (typically the target kernel, k);
        swap_kernel(y,X) returns array of kernel evaluations between y and each row of X
      delta: Run KT-SPLIT with constant failure probabilities delta_i = delta/n
      seed: Random seed to set prior to generation; if None, no seed will be set
      store_K: If False, runs O(nd) space version which does not store kernel
        matrix; if True, stores n x n kernel matrix
    """

For example uses, please refer to the notebook examples/kt/run_kt_experiment.ipynb.

The primary Compress++ function is compresspp in the compress module:

from goodpoints import compress
coreset = compress.compresspp(X, halve, thin, g)
    """Returns Compress++(g) coreset of size sqrt(n) as row indices into X

    Args: 
        X: Input sequence of sample points with shape (n, d)
        halve: Function that takes in an (n', d) numpy array Y and returns 
          floor(n'/2) distinct row indices into Y, identifying a halved coreset
        thin: Function that takes in an (n', d) numpy array Y and returns
          2^g sqrt(n') row indices into Y, identifying a thinned coreset
        g: Oversampling factor
    """

For example uses, please refer to the code examples/compress/construct_compresspp_coresets.py.

Examples

Code in the examples directory uses the goodpoints package to recreate the experiments of the following research papers.


Kernel Thinning

@article{dwivedi2021kernel,
  title={Kernel Thinning},
  author={Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2105.05842},
  year={2021}
}
  1. The script examples/kt/submit_jobs_run_kt.py reproduces the vignette experiments of Kernel Thinning on a Slurm cluster by executing examples/kt/run_kt_experiment.ipynb with appropriate parameters. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb, where in the last code block we report the median heuristic based bandwidth parameteters (along with the code to compute it).
  2. After all results have been generated, the notebook plot_results.ipynb can be used to reproduce the figures of Kernel Thinning.

Generalized Kernel Thinning

@article{dwivedi2021generalized,
  title={Generalized Kernel Thinning},
  author={Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2110.01593},
  year={2021}
}
  1. The script examples/gkt/submit_gkt_jobs.py reproduces the vignette experiments of Generalized Kernel Thinning on a Slurm cluster by executing examples/gkt/run_generalized_kt_experiment.ipynb with appropriate parameters. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb.
  2. Once the coresets are generated, examples/gkt/compute_test_function_errors.ipynb can be used to generate integration errors for different test functions.
  3. After all results have been generated, the notebook examples/gkt/plot_gkt_results.ipynb can be used to reproduce the figures of Generalized Kernel Thinning.

Distribution Compression in Near-linear Time

@article{shetti2021distribution,
  title={Distribution Compression in Near-linear Time},
  author={Abhishek Shetty and Raaz Dwivedi and Lester Mackey},
  journal={arXiv preprint arXiv:2111.07941},
  year={2021}
}
  1. The notebook examples/compress/script_to_deploy_jobs.ipynb reproduces the experiments of Distribution Compression in Near-linear Time in the following manner: 1a. It generates various coresets and computes their mmds by executing examples/compress/construct_{THIN}_coresets.py for THIN in {compresspp, kt, st, herding} with appropriate parameters, where the flag kt stands for kernel thinning, st stands for standard thinning (choosing every t-th point), and herding refers to kernel herding. 1b. It compute the runtimes of different algorithms by executing examples/compress/run_time.py. 1c. For the MCMC examples, it assumes that necessary data was downloaded and pre-processed following the steps listed in examples/kt/preprocess_mcmc_data.ipynb. 1d. The notebook currently deploys these jobs on a slurm cluster, but setting deploy_slurm = False in examples/compress/script_to_deploy_jobs.ipynb will submit the jobs as independent python calls on terminal.
  2. After all results have been generated, the notebook examples/compress/plot_compress_results.ipynb can be used to reproduce the figures of Distribution Compression in Near-linear Time.
  3. The script examples/compress/construct_compresspp_coresets.py contains the function recursive_halving that converts a halving algorithm into a thinning algorithm by recursively halving.
  4. The script examples/compress/construct_herding_coresets.py contains the herding function that runs kernel herding algorithm introduced by Yutian Chen, Max Welling, and Alex Smola.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
Listing arxiv - Personalized list of today's articles from ArXiv

Personalized list of today's articles from ArXiv Print and/or send to your gmail

Lilianne Nakazono 5 Jun 17, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022