Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

Overview

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs

Directory Structure

data/ --> data folder including splits we use for FEVER, zsRE, Wikidata5m, and LeapOfThought
training_reports/ --> folder to be populated with individual training run reports produced by main.py
result_sheets/ --> folder to be populated with .csv's of results from experiments produced by main.py
aggregated_results/ --> contains combined experiment results produced by run_jobs.py
outputs/ --> folder to be populated with analysis results, including belief graphs and bootstrap outputs
models/ --> contains model wrappers for Huggingface models and the learned optimizer code
data_utils/ --> contains scripts for making all datasets used in paper
main.py --> main script for all individual experiments in the paper
metrics.py --> functions for calculing metrics reported in the paper
utils.py --> data loading and miscellaneous utilities
run_jobs.py --> script for running groups of experiments
statistical_analysis.py --> script for running bootstraps with the experimental results
data_analysis.Rmd --> R markdown file that makes plots using .csv's in result_sheets
requirements.txt --> contains required packages

Requirements

The code is compatible with Python 3.6+. data_analysis.Rmd is an R markdown file that makes all the plots in the paper.

The required packages can be installed by running:

pip install -r requirements.txt

If you wish to visualize belief graphs, you should also install a few packages as so:

sudo apt install python-pydot python-pydot-ng graphviz

Making Data

We include the data splits from the paper in data/ (though the train split for Wikidata5m is divided into two files that need to be locally combined.) To construct the datasets from scratch, you can follow a few steps:

  1. Set the DATA_DIR environment variable to where you'd like the data to be stored. Set the CODE_DIR to point to the directory where this code is.
  2. Run the following blocks of code

Make FEVER and ZSRE

cd $DATA_DIR
git clone https://github.com/facebookresearch/KILT.git
cd KILT
mkdir data
python scripts/download_all_kilt_data.py
mv data/* ./
cd $CODE_DIR
python data_utils/shuffle_fever_splits.py
python data_utils/shuffle_zsre_splits.py

Make Leap-Of-Thought

cd $DATA_DIR
git clone https://github.com/alontalmor/LeapOfThought.git
cd LeapOfThought
python -m LeapOfThought.run -c Hypernyms --artiset_module soft_reasoning -o build_artificial_dataset -v training_mix -out taxonomic_reasonings.jsonl.gz
gunzip taxonomic_reasonings_training_mix_train.jsonl.gz taxonomic_reasonings_training_mix_dev.jsonl.gz taxonomic_reasonings_training_mix_test.jsonl.gz taxonomic_reasonings_training_mix_meta.jsonl.gz
cd $CODE_DIR
python data_utils/shuffle_leapofthought_splits.py

Make Wikidata5m

cd $DATA_DIR
mkdir Wikidata5m
cd Wikidata5m
wget https://www.dropbox.com/s/6sbhm0rwo4l73jq/wikidata5m_transductive.tar.gz
wget https://www.dropbox.com/s/lnbhc8yuhit4wm5/wikidata5m_alias.tar.gz
tar -xvzf wikidata5m_transductive.tar.gz
tar -xvzf wikidata5m_alias.tar.gz
cd $CODE_DIR
python data_utils/filter_wikidata.py

Experiment Replication

Experiment commands require a few arguments: --data_dir points to where the data is. --save_dir points to where models should be saved. --cache_dir points to where pretrained models will be stored. --gpu indicates the GPU device number. --seeds indicates how many seeds per condition to run. We give commands below for the experiments in the paper, saving everything in $DATA_DIR.

To train the task and prepare the necessary data for training learned optimizers, run:

python run_jobs.py -e task_model --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e write_LeapOfThought_preds --seeds 5 --dataset LeapOfThought --do_train false --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

To get the main experiments in a single-update setting, run:

python run_jobs.py -e learned_opt_main --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

For results in a sequential-update setting (with r=10) run:

python run_jobs.py -e learned_opt_r_main --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

To get the corresponding off-the-shelf optimizer baselines for these experiments, run

python run_jobs.py -e base_optimizers --seeds 5 --do_train false  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e base_optimizers_r_main --seeds 5 --do_train false  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

To get ablations across values of r for the learned optimizer and baselines, run

python run_jobs.py -e base_optimizers_r_ablation --seeds 1 --do_train false  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

Next we give commands for for ablations across k, the choice of training labels, the choice of evaluation labels, training objective terms, and a comparison to the objective from de Cao (in order):

python run_jobs.py -e learned_opt_k_ablation --seeds 1 --dataset ZSRE  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_label_ablation --seeds 1 --dataset ZSRE --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_eval_ablation --seeds 1 --dataset ZSRE  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_objective_ablation --seeds 1 --dataset all  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_de_cao --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

Analysis

Statistical Tests

After running an experiment from above, you can compute confidence intervals and hypothesis tests using statistical_analysis.py.

To get confidence intervals for the main single-update learned optimizer experiments, run

python statistical_analysis -e learned_opt_main -n 10000

To run hypothesis tests between statistics for the learned opt experiment and its baselines, run

python statistical_analysis -e learned_opt_main -n 10000 --hypothesis_tests true

You can substitute the experiment name for results for other conditions.

Belief Graphs

Add --save_dir, --cache_dir, and --data_dir arguments to the commands below per the instructions above.

Write preds from FEVER model:
python main.py --dataset FEVER --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --write_preds_to_file true

Write graph to file:
python main.py --dataset FEVER --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --optimizer adamw --lr 1e-6 --update_steps 100 --update_all_points true --write_graph_to_file true --use_dev_not_test false --num_random_other 10444

Analyze graph:
python main.py --dataset FEVER --probing_style model --probe linear --model roberta-base --seed 0 --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --use_dev_not_test false --optimizer adamw --lr 1e-6 --update_steps 100 --do_train false --do_eval false --pre_eval false --do_graph_analysis true

Combine LeapOfThought Main Inputs and Entailed Data:
python data_utils/combine_leapofthought_data.py

Write LeapOfThought preds to file:
python main.py --dataset LeapOfThought --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --write_preds_to_file true --leapofthought_main main

Write graph for LeapOfThought:
python main.py --dataset LeapOfThought --leapofthought_main main --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --optimizer sgd --update_steps 100 --lr 1e-2 --update_all_points true --write_graph_to_file true --use_dev_not_test false --num_random_other 8642

Analyze graph (add --num_eval_points 2000 to compute update-transitivity):
python main.py --dataset LeapOfThought --leapofthought_main main --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --optimizer sgd --update_steps 100 --lr 1e-2 --do_train false --do_eval false --pre_eval false --do_graph_analysis true

Plots

The data_analysis.Rmd R markdown file contains code for plots in the paper. It reads data from aggregated_results and saves plots in a ./figures directory.

Owner
Peter Hase
I am a PhD student in the UNC-NLP group at UNC Chapel Hill.
Peter Hase
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
yufan 81 Dec 08, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022