A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

Overview

IllustrationGAN

A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

Generated Images

These images were generated by the model after being trained on a custom dataset of about 20,000 anime faces that were automatically cropped from illustrations using a face detector. Generated Images

Checking for Overfitting

It is theoretically possible for the generator network to memorize training set images rather than actually generalizing and learning to produce novel images of its own. To check for this, I randomly generate images and display the "closest" images in the training set according to mean squared error. The top row is randomly generated images, the columns are the closest 5 images in the training set.

Overfitting Check

It is clear that the generator does not merely learn to copy training set images, but rather generalizes and is able to produce its own unique images.

How it Works

Generative Adversarial Networks consist of two neural networks: a discriminator and a generator. The discriminator receives both real images from the training set and generated images produced by the generator. The discriminator outputs the probability that an image is real, so it is trained to output high values for the real images and low values for the generated ones. The generator is trained to produce images that the discriminator thinks are real. Both the discriminator and generator are trainined simultaneously so that they compete against each other. As a result of this, the generator learns to produce more and more realistic images as it trains.

Model Architecture

The model is based on DCGANs, but with a few important differences:

  1. No strided convolutions. The generator uses bilinear upsampling to upscale a feature blob by a factor of 2, followed by a stride-1 convolution layer. The discriminator uses a stride-1 convolution followed by 2x2 max pooling.

  2. Minibatch discrimination. See Improved Techniques for Training GANs for more details.

  3. More fully connected layers in both the generator and discriminator. In DCGANs, both networks have only one fully connected layer.

  4. A novel regularization term applied to the generator network. Normally, increasing the number of fully connected layers in the generator beyond one triggers one of the most common failure modes when training GANs: the generator "collapses" the z-space and produces only a very small number of unique examples. In other words, very different z vectors will produce nearly the same generated image. To fix this, I add a small auxiliary z-predictor network that takes as input the output of the last fully connected layer in the generator, and predicts the value of z. In other words, it attempts to learn the inverse of whatever function the generator fully connected layers learn. The z-predictor network and generator are trained together to predict the value of z. This forces the generator fully connected layers to only learn those transformations that preserve information about z. The result is that the aformentioned collapse no longer occurs, and the generator is able to leverage the power of the additional fully connected layers.

Training the Model

Dependencies: TensorFlow, PrettyTensor, numpy, matplotlib

The custom dataset I used is too large to add to a Github repository; I am currently finding a suitable way to distribute it. Instructions for training the model will be in this readme after I make the dataset available.

PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022