The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

Related tags

Deep LearningDeepBDC
Overview

DeepBDC for few-shot learning

      

Introduction

In this repo, we provide the implementation of the following paper:
"Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification" [Project] [Paper].

In this paper, we propose deep Brownian Distance Covariance (DeepBDC) for few-shot classification. DeepBDC can effectively learn image representations by measuring, for the query and support images, the discrepancy between the joint distribution of their embedded features and product of the marginals. The core of DeepBDC is formulated as a modular and efficient layer, which can be flexibly inserted into deep networks, suitable not only for meta-learning framework based on episodic training, but also for the simple transfer learning (STL) framework of pretraining plus linear classifier.

If you find this repo helpful for your research, please consider citing our paper:

@inproceedings{DeepBDC-CVPR2022,
    title={Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification},
    author={Jiangtao Xie and Fei Long and Jiaming Lv and Qilong Wang and Peihua Li}, 
    booktitle={CVPR},
    year={2022}
 }

Few-shot classification Results

Experimental results on miniImageNet and CUB. We report average results with 2,000 randomly sampled episodes for both 1-shot and 5-shot evaluation. More details on the experiments can be seen in the paper.

miniImageNet

Method ResNet-12 Pre-trained models Meta-trained models
5-way-1-shot 5-way-5-shot GoogleDrive BaiduCloud GoogleDrive BaiduCloud
ProtoNet 62.11±0.44 80.77±0.30 Download Download Download Download
Good-Embed 64.98±0.44 82.10±0.30 Download Download N/A
Meta DeepBDC 67.34±0.43 84.46±0.28 Download Download Download Download
STL DeepBDC 67.83±0.43 85.45±0.29 Download Download N/A

Note that for Good-Embed and STL DeepBDC, a sequential self-distillation technique is used to obtain the pre-trained models; See the paper of Good-Embed for details.

CUB

Method ResNet-18 Pre-trained models Meta-trained models
5-way-1-shot 5-way-5-shot GoogleDrive BaiduCloud GoogleDrive BaiduCloud
ProtoNet 80.90±0.43 89.81±0.23 Download Download Download Download
Good-Embed 77.92±0.46 89.94±0.26 Download Download N/A
Meta DeepBDC 83.55±0.40 93.82±0.17 Download Download Download Download
STL DeepBDC 84.01±0.42 94.02±0.24 Download Download N/A

Note that for Good-Embed and STL DeepBDC, a sequential self-distillation technique is used to obtain the pre-trained models; See the paper of Good-Embed for details.

References

[BDC] G. J. Szekely and M. L. Rizzo. Brownian distance covariance. Annals of Applied Statistics, 3:1236–1265, 2009.
[ProtoNet] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In NIPS, 2017.
[Good-Embed] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola. Rethinking few-shot image classification: a good embedding is all you need? In ECCV, 2020.

Implementation details

Datasets

  • miniImageNet: We use the splits provided by Chen et al.
  • CUB: We use the splits provided by Chen et al.
  • tieredImageNet
  • Aircraft
  • Cars

Implementation environment

Note that the test accuracy may slightly vary with different Pytorch/CUDA versions, GPUs, etc.

  • Linux
  • Python 3.8.3
  • torch 1.7.1
  • GPU (RTX3090) + CUDA11.0 CuDNN
  • sklearn1.0.1, pillow8.0.0, numpy1.19.2

Installation

  • Clone this repo:
git clone https://github.com/Fei-Long121/DeepBDC.git
cd DeepBDC

For Meta DeepBDC on general object recognition

  1. cd scripts/mini_magenet/run_meta_deepbdc
  2. modify the dataset path in run_pretrain.sh, run_metatrain.sh and run_test.sh
  3. bash run.sh

For STL DeepBDC on general object recognition

  1. cd scripts/mini_imagenet/run_stl_deepbdc
  2. modify the dataset path in run_pretrain.sh, run_distillation.sh and run_test.sh
  3. bash run.sh

Acknowledgments

Our code builds upon the the following code publicly available:

Contact

If you have any questions or suggestions, please contact us:

Fei Long([email protected])
Jiaming Lv([email protected])

Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022