PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

Overview

About PyTorch 1.2.0

  • Now the master branch supports PyTorch 1.2.0 by default.
  • Due to the serious version problem (especially torch.utils.data.dataloader), MDSR functions are temporarily disabled. If you have to train/evaluate the MDSR model, please use legacy branches.

EDSR-PyTorch

About PyTorch 1.1.0

  • There have been minor changes with the 1.1.0 update. Now we support PyTorch 1.1.0 by default, and please use the legacy branch if you prefer older version.

This repository is an official PyTorch implementation of the paper "Enhanced Deep Residual Networks for Single Image Super-Resolution" from CVPRW 2017, 2nd NTIRE. You can find the original code and more information from here.

If you find our work useful in your research or publication, please cite our work:

[1] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee, "Enhanced Deep Residual Networks for Single Image Super-Resolution," 2nd NTIRE: New Trends in Image Restoration and Enhancement workshop and challenge on image super-resolution in conjunction with CVPR 2017. [PDF] [arXiv] [Slide]

@InProceedings{Lim_2017_CVPR_Workshops,
  author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu},
  title = {Enhanced Deep Residual Networks for Single Image Super-Resolution},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  month = {July},
  year = {2017}
}

We provide scripts for reproducing all the results from our paper. You can train your model from scratch, or use a pre-trained model to enlarge your images.

Differences between Torch version

  • Codes are much more compact. (Removed all unnecessary parts.)
  • Models are smaller. (About half.)
  • Slightly better performances.
  • Training and evaluation requires less memory.
  • Python-based.

Dependencies

  • Python 3.6
  • PyTorch >= 1.0.0
  • numpy
  • skimage
  • imageio
  • matplotlib
  • tqdm
  • cv2 >= 3.xx (Only if you want to use video input/output)

Code

Clone this repository into any place you want.

git clone https://github.com/thstkdgus35/EDSR-PyTorch
cd EDSR-PyTorch

Quickstart (Demo)

You can test our super-resolution algorithm with your images. Place your images in test folder. (like test/<your_image>) We support png and jpeg files.

Run the script in src folder. Before you run the demo, please uncomment the appropriate line in demo.sh that you want to execute.

cd src       # You are now in */EDSR-PyTorch/src
sh demo.sh

You can find the result images from experiment/test/results folder.

Model Scale File name (.pt) Parameters **PSNR
EDSR 2 EDSR_baseline_x2 1.37 M 34.61 dB
*EDSR_x2 40.7 M 35.03 dB
3 EDSR_baseline_x3 1.55 M 30.92 dB
*EDSR_x3 43.7 M 31.26 dB
4 EDSR_baseline_x4 1.52 M 28.95 dB
*EDSR_x4 43.1 M 29.25 dB
MDSR 2 MDSR_baseline 3.23 M 34.63 dB
*MDSR 7.95 M 34.92 dB
3 MDSR_baseline 30.94 dB
*MDSR 31.22 dB
4 MDSR_baseline 28.97 dB
*MDSR 29.24 dB

*Baseline models are in experiment/model. Please download our final models from here (542MB) **We measured PSNR using DIV2K 0801 ~ 0900, RGB channels, without self-ensemble. (scale + 2) pixels from the image boundary are ignored.

You can evaluate your models with widely-used benchmark datasets:

Set5 - Bevilacqua et al. BMVC 2012,

Set14 - Zeyde et al. LNCS 2010,

B100 - Martin et al. ICCV 2001,

Urban100 - Huang et al. CVPR 2015.

For these datasets, we first convert the result images to YCbCr color space and evaluate PSNR on the Y channel only. You can download benchmark datasets (250MB). Set --dir_data <where_benchmark_folder_located> to evaluate the EDSR and MDSR with the benchmarks.

You can download some results from here. The link contains EDSR+_baseline_x4 and EDSR+_x4. Otherwise, you can easily generate result images with demo.sh scripts.

How to train EDSR and MDSR

We used DIV2K dataset to train our model. Please download it from here (7.1GB).

Unpack the tar file to any place you want. Then, change the dir_data argument in src/option.py to the place where DIV2K images are located.

We recommend you to pre-process the images before training. This step will decode all png files and save them as binaries. Use --ext sep_reset argument on your first run. You can skip the decoding part and use saved binaries with --ext sep argument.

If you have enough RAM (>= 32GB), you can use --ext bin argument to pack all DIV2K images in one binary file.

You can train EDSR and MDSR by yourself. All scripts are provided in the src/demo.sh. Note that EDSR (x3, x4) requires pre-trained EDSR (x2). You can ignore this constraint by removing --pre_train <x2 model> argument.

cd src       # You are now in */EDSR-PyTorch/src
sh demo.sh

Update log

  • Jan 04, 2018

    • Many parts are re-written. You cannot use previous scripts and models directly.
    • Pre-trained MDSR is temporarily disabled.
    • Training details are included.
  • Jan 09, 2018

    • Missing files are included (src/data/MyImage.py).
    • Some links are fixed.
  • Jan 16, 2018

    • Memory efficient forward function is implemented.
    • Add --chop_forward argument to your script to enable it.
    • Basically, this function first split a large image to small patches. Those images are merged after super-resolution. I checked this function with 12GB memory, 4000 x 2000 input image in scale 4. (Therefore, the output will be 16000 x 8000.)
  • Feb 21, 2018

    • Fixed the problem when loading pre-trained multi-GPU model.
    • Added pre-trained scale 2 baseline model.
    • This code now only saves the best-performing model by default. For MDSR, 'the best' can be ambiguous. Use --save_models argument to keep all the intermediate models.
    • PyTorch 0.3.1 changed their implementation of DataLoader function. Therefore, I also changed my implementation of MSDataLoader. You can find it on feature/dataloader branch.
  • Feb 23, 2018

    • Now PyTorch 0.3.1 is a default. Use legacy/0.3.0 branch if you use the old version.

    • With a new src/data/DIV2K.py code, one can easily create new data class for super-resolution.

    • New binary data pack. (Please remove the DIV2K_decoded folder from your dataset if you have.)

    • With --ext bin, this code will automatically generate and saves the binary data pack that corresponds to previous DIV2K_decoded. (This requires huge RAM (~45GB, Swap can be used.), so please be careful.)

    • If you cannot make the binary pack, use the default setting (--ext img).

    • Fixed a bug that PSNR in the log and PSNR calculated from the saved images does not match.

    • Now saved images have better quality! (PSNR is ~0.1dB higher than the original code.)

    • Added performance comparison between Torch7 model and PyTorch models.

  • Mar 5, 2018

    • All baseline models are uploaded.
    • Now supports half-precision at test time. Use --precision half to enable it. This does not degrade the output images.
  • Mar 11, 2018

    • Fixed some typos in the code and script.
    • Now --ext img is default setting. Although we recommend you to use --ext bin when training, please use --ext img when you use --test_only.
    • Skip_batch operation is implemented. Use --skip_threshold argument to skip the batch that you want to ignore. Although this function is not exactly the same with that of Torch7 version, it will work as you expected.
  • Mar 20, 2018

    • Use --ext sep-reset to pre-decode large png files. Those decoded files will be saved to the same directory with DIV2K png files. After the first run, you can use --ext sep to save time.
    • Now supports various benchmark datasets. For example, try --data_test Set5 to test your model on the Set5 images.
    • Changed the behavior of skip_batch.
  • Mar 29, 2018

    • We now provide all models from our paper.
    • We also provide MDSR_baseline_jpeg model that suppresses JPEG artifacts in the original low-resolution image. Please use it if you have any trouble.
    • MyImage dataset is changed to Demo dataset. Also, it works more efficient than before.
    • Some codes and script are re-written.
  • Apr 9, 2018

    • VGG and Adversarial loss is implemented based on SRGAN. WGAN and gradient penalty are also implemented, but they are not tested yet.
    • Many codes are refactored. If there exists a bug, please report it.
    • D-DBPN is implemented. The default setting is D-DBPN-L.
  • Apr 26, 2018

    • Compatible with PyTorch 0.4.0
    • Please use the legacy/0.3.1 branch if you are using the old version of PyTorch.
    • Minor bug fixes
  • July 22, 2018

    • Thanks for recent commits that contains RDN and RCAN. Please see code/demo.sh to train/test those models.
    • Now the dataloader is much stable than the previous version. Please erase DIV2K/bin folder that is created before this commit. Also, please avoid using --ext bin argument. Our code will automatically pre-decode png images before training. If you do not have enough spaces(~10GB) in your disk, we recommend --ext img(But SLOW!).
  • Oct 18, 2018

    • with --pre_train download, pretrained models will be automatically downloaded from the server.
    • Supports video input/output (inference only). Try with --data_test video --dir_demo [video file directory].
  • About PyTorch 1.0.0

    • We support PyTorch 1.0.0. If you prefer the previous versions of PyTorch, use legacy branches.
    • --ext bin is not supported. Also, please erase your bin files with --ext sep-reset. Once you successfully build those bin files, you can remove -reset from the argument.
Owner
Sanghyun Son
BS: ECE, Seoul National University (2013.03 ~ 2017.02) Grad: ECE, Seoul National University (2017.03 ~)
Sanghyun Son
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022