Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

Overview

RHM: Robot Hacking Manual

Download in PDF RHM v0.4Read online

The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robots, with an attempt to provide comprehensive case studies and step-by-step tutorials with the intent to raise awareness in the field and highlight the importance of taking a security-first1 approach. The material available here is also a personal learning attempt and it's disconnected from any particular organization. Content is provided as is and by no means I encourage or promote the unauthorized tampering of robotic systems or related technologies.

Footnotes

  1. Read on what a security-first approach in here.

You might also like...
ICCV2021 - A New Journey from SDRTV to HDRTV.
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

Control-Raspberry-Pi-Robot-using-Hand-Gestures - A 4WD Robot car based on Raspberry Pi that controlled by hand gestures(using openCV and mediapipe) Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

Pytorch code for ICRA'21 paper:
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

YARR is Yet Another Robotics and Reinforcement learning framework for PyTorch.
YARR is Yet Another Robotics and Reinforcement learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Robotics with GPU computing
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Comments
  • Aztarna path for Dockerfile COPY

    Aztarna path for Dockerfile COPY

    Hi vmayoral, thanks for putting this together.

    It may be helpful to instruct in the readme that users clone/copy the aztarna package to the Dockerfile build directory (basic_robot_cybersecurity/robot_footprinting/tutorial1) for tutorial 1 so that it can be copied via the relative path (COPY ./aztarna /root/aztarna) in the Dockerfile.

    opened by mitchallain 2
Releases(0.5)
  • 0.5(Aug 3, 2022)

    Robot Hacking Manual (RHM v0.5). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

    The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robots, with an attempt to provide comprehensive case studies and step-by-step tutorials with the intent to raise awareness in the field and highlight the importance of taking a security-first approach. The material available here is also a personal learning attempt and it's disconnected from any particular organization. Content is provided as is and by no means I encourage or promote the unauthorized tampering of robotic systems or related technologies.

    Changes:

    • Added robot hacks table
    • Reviewed case studies
    • Various minor improvements
    • Updated list of recommended talks
    Source code(tar.gz)
    Source code(zip)
    RHM.pdf(6.22 MB)
  • 0.4(Dec 12, 2021)

    Robot Hacking Manual (RHM v0.4). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

    The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robots, with an attempt to provide comprehensive case studies and step-by-step tutorials with the intent to raise awareness in the field and highlight the importance of taking a security-first approach. The material available here is also a personal learning attempt and it's disconnected from any particular organization. Content is provided as is and by no means I encourage or promote the unauthorized tampering of robotic systems or related technologies.

    Changes:

    • Added recap of talks and videos on robot cybersecurity
    • Added a new case study with open source ROS (1) PoCs
    • Improvements
    Source code(tar.gz)
    Source code(zip)
    RHM.pdf(6.13 MB)
  • 0.3(Nov 21, 2021)

    Robot Hacking Manual (RHM v0.3). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

    The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robots, with an attempt to provide comprehensive case studies and step-by-step tutorials with the intent to raise awareness in the field and highlight the importance of taking a security-first approach. The material available here is also a personal learning attempt and it's disconnected from any particular organization. Content is provided as is and by no means I encourage or promote the unauthorized tampering of robotic systems or related technologies.

    Source code(tar.gz)
    Source code(zip)
    RHM.pdf(9.05 MB)
Owner
Víctor Mayoral Vilches
Roboticist. AI and security enthusiast.
Víctor Mayoral Vilches
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022