Using VapourSynth with super resolution models and speeding them up with TensorRT.

Overview

VSGAN-tensorrt-docker

Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined with rlaphoenix/VSGAN. This repo makes the usage of tiling and ESRGAN models very easy. Models can be found on the wiki page. Further model architectures are planned to be added later on.

Currently working:

  • ESRGAN
  • RealESRGAN (adjust model load manually in inference.py, settings wont be adjusted automatically currently)

Usage:

# install docker, command for arch
yay -S docker nvidia-docker nvidia-container-toolkit
# Put the dockerfile in a directory and run that inside that directory
docker build -t vsgan_tensorrt:latest .
# run with a mounted folder
docker run --privileged --gpus all -it --rm -v /home/Desktop/tensorrt:/workspace/tensorrt vsgan_tensorrt:latest
# you can use it in various ways, ffmpeg example
vspipe --y4m inference.py - | ffmpeg -i pipe: example.mkv

If docker does not want to start, try this before you use docker:

# fixing docker errors
systemctl start docker
sudo chmod 666 /var/run/docker.sock

Windows is mostly similar, but the path needs to be changed slightly:

Example for C://path
docker run --privileged --gpus all -it --rm -v //c/path:/workspace/tensorrt vsgan_tensorrt:latest

If you don't want to use docker, vapoursynth install commands are here and a TensorRT example is here.

Set the input video path in inference.py and access videos with the mounted folder.

It is also possible to directly pipe the video into mpv, but you most likely wont be able to archive realtime speed. Change the mounted folder path to your own videofolder and use the mpv dockerfile instead. If you use a very efficient model, it may be possible on a very good GPU. Only tested in Manjaro.

yay -S pulseaudio

# i am not sure if it is needed, but go into pulseaudio settings and check "make pulseaudio network audio devices discoverable in the local network" and reboot

# start docker
docker run --rm -i -t \
    --network host \
    -e DISPLAY \
    -v /home/Schreibtisch/test/:/home/mpv/media \
    --ipc=host \
    --privileged \
    --gpus all \
    -e PULSE_COOKIE=/run/pulse/cookie \
    -v ~/.config/pulse/cookie:/run/pulse/cookie \
    -e PULSE_SERVER=unix:${XDG_RUNTIME_DIR}/pulse/native \
    -v ${XDG_RUNTIME_DIR}/pulse/native:${XDG_RUNTIME_DIR}/pulse/native \
    vsgan_tensorrt:latest
    
# run mpv
vspipe --y4m inference.py - | mpv -
Comments
  • Invalid data found when processing input

    Invalid data found when processing input

    Hey when i start the inference.py script this happen :

    someone can help me ?

    
    > ffmpeg version N-62110-g4d45f5acbd-static https://johnvansickle.com/ffmpeg/  Copyright (c) 2000-2022 the FFmpeg developers
    >   built with gcc 8 (Debian 8.3.0-6)
    >   configuration: --enable-gpl --enable-version3 --enable-static --disable-debug --disable-ffplay --disable-indev=sndio --disable-outdev=sndio --cc=gcc --enable-fontconfig --enable-frei0r --enable-gnutls --enable-gmp --enable-libgme --enable-gray --enable-libaom --enable-libfribidi --enable-libass --enable-libvmaf --enable-libfreetype --enable-libmp3lame --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-librubberband --enable-libsoxr --enable-libspeex --enable-libsrt --enable-libvorbis --enable-libopus --enable-libtheora --enable-libvidstab --enable-libvo-amrwbenc --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libdav1d --enable-libxvid --enable-libzvbi --enable-libzimg
    >   libavutil      57. 26.100 / 57. 26.100
    >   libavcodec     59. 33.100 / 59. 33.100
    >   libavformat    59. 24.100 / 59. 24.100
    >   libavdevice    59.  6.100 / 59.  6.100
    >   libavfilter     8. 40.100 /  8. 40.100
    >   libswscale      6.  6.100 /  6.  6.100
    >   libswresample   4.  6.100 /  4.  6.100
    >   libpostproc    56.  5.100 / 56.  5.100
    > Information: Generating grammar tables from /usr/lib/python3.8/lib2to3/Grammar.txt
    > Information: Generating grammar tables from /usr/lib/python3.8/lib2to3/PatternGrammar.txt
    > Script evaluation failed:
    > Python exception: libtorch_cuda_cu.so: cannot open shared object file: No such file or directory
    > 
    > Traceback (most recent call last):
    >   File "src\cython\vapoursynth.pyx", line 2890, in vapoursynth._vpy_evaluate
    >   File "src\cython\vapoursynth.pyx", line 2891, in vapoursynth._vpy_evaluate
    >   File "inference.py", line 85, in <module>
    >     clip = ESRGAN_inference(clip=clip, model_path="/workspace/RealESRGAN_x4plus_anime_6B.pth", tile_x=480, tile_y=480, tile_pad=16, fp16=False, tta=False, tta_mode=1)
    >   File "/workspace/tensorrt/src/esrgan.py", line 680, in ESRGAN_inference
    >     import torch_tensorrt
    >   File "/usr/local/lib/python3.8/dist-packages/torch_tensorrt/__init__.py", line 11, in <module>
    >     from torch_tensorrt._compile import *
    >   File "/usr/local/lib/python3.8/dist-packages/torch_tensorrt/_compile.py", line 2, in <module>
    >     from torch_tensorrt import _enums
    >   File "/usr/local/lib/python3.8/dist-packages/torch_tensorrt/_enums.py", line 1, in <module>
    >     from torch_tensorrt._C import dtype, DeviceType, EngineCapability, TensorFormat
    > ImportError: libtorch_cuda_cu.so: cannot open shared object file: No such file or directory
    > 
    > pipe:: Invalid data found when processing input
    
    
    opened by NeoBurgerYT 10
  • Module not found 'scipy'

    Module not found 'scipy'

    I can't run my inference.py without getting this error message. Can someone direct me to where I can get the repo?

    File "/usr/local/lib/python3.8/dist-packages/mmedit/core/evaluation/metrics.py", line 7, in from scipy.ndimage import convolve ModuleNotFoundError: No module named 'scipy'

    pipe:: Invalid data found when processing input

    opened by terminatedkhla 8
  • Tutorial?

    Tutorial?

    Hi! This is amazing technology! I’m blown away. I’d love to contact you directly on how to use it in colab, I’m quite confused with the process. I’ve tried running it but not sure I’m running it correctly. Thanks in advance!

    opened by AIManifest 6
  • Trying On A M1 Mac

    Trying On A M1 Mac

    So I followed this tutorial https://www.youtube.com/watch?v=B134jvhO8yk&t=0s But when docker run --privileged --gpus all -it --rm -v /home/vsgan_path/:/workspace/tensorrt styler00dollar/vsgan_tensorrt:latest it just gives me an error that it doesn't find the right amd64 or somthing and I rage quit deleted it without seeing the full error. PLS HELP ME :(

    opened by Ghostkwebb 6
  • Crash when using RIFE ensemble models in vsmlrt

    Crash when using RIFE ensemble models in vsmlrt

    I get this error

    vapoursynth.Error: operator (): expects 8 input planes
    

    from this

    import vapoursynth as vs
    from vapoursynth import core
    core = vs.core
    import vsmlrt
    
    clip = core.lsmas.LWLibavSource(source=r"R:\output.mkv",cache=1, prefer_hw=1)
    clip = core.resize.Bicubic(clip, matrix_in_s="709", transfer_in_s='709', format=vs.RGBS)
    clip = vsmlrt.RIFE(clip, multi=4, model=46, backend=vsmlrt.Backend.TRT(fp16=True), tilesize=[1920,1088])
    clip = core.std.AssumeFPS(clip=clip, fpsnum=60, fpsden=1)
    clip = core.resize.Bicubic(clip, format=vs.RGB24, matrix_in_s="709")
    clip.set_output()
    
    opened by banjaminicc 4
  • Support for AITemplate?

    Support for AITemplate?

    There is something that came out recently and it's look promising in terms of performance/speed. Would it be possible to implement it for ESERGAN mode? https://github.com/facebookincubator/AITemplate

    opened by kodxana 4
  • CUDA out of Memory

    CUDA out of Memory

    System Specs: Ryzen 9 5900HX, NVidia 3070 Mobile, Arch Linux (EndeavorOS) on Kernel 5.17.2

    Whenever I try to run a model that is relying on CUDA, for example cugan, the program exits with

    Error: Failed to retrieve frame 0 with error: CUDA out of memory. Tried to allocate 148.00 MiB (GPU 0; 7.80 GiB total capacity; 5.53 GiB already allocated; 68.56 MiB free; 5.69 GiB reserved in total by PyTorch)

    and stops after having output 4 frames.

    However, TensorRT works fine for models that support it (like RealESRGAN for example).

    Edit: Running nvidia-smi while the command is executed reveals that vspipe is allocating GPU Memory, but <2 GiB of VRAM, far from the 8GiB my model has.

    opened by mmkzer0 4
  • No module named 'vsbasicvsrpp'

    No module named 'vsbasicvsrpp'

    Traceback (most recent call last): File "src\cython\vapoursynth.pyx", line 2832, in vapoursynth._vpy_evaluate File "src\cython\vapoursynth.pyx", line 2833, in vapoursynth._vpy_evaluate File "inference.py", line 12, in from vsbasicvsrpp import BasicVSRPP ModuleNotFoundError: No module named 'vsbasicvsrpp'

    opened by xt851231 4
  • Google colab request?

    Google colab request?

    I recently stumbled upon this VSGAN-tensorrt-docker and found it so incredible! Could anyone make a google colab notebook that features everything from this VSGAN-tensorrt-docker, so that we could experience the speed of TensorRT! Thanks in advance!

    opened by mikebilly 3
  • model conversion from onnx to trt

    model conversion from onnx to trt

    @styler00dollar this is not issue but a question, I read the scripts in inference.py and found real-esrgan 2x is loaded from trt engine file, since real-2x uses dynamic shapes as input, could you share any ideas how to convert this model to trt, thanks!

    opened by deism 3
  • ESRGAN with full episode

    ESRGAN with full episode

    Hello,

    I'm trying to upscale MKV files of full episodes with ESRGAN. I tried using vspipe -c y4m inference.py - | ffmpeg -i pipe: example.mkv, and it seems to run up to the point where it starts to give an ETA. Once there the time doesn't move and eventually, it says it was killed.

    Can you give me some tips on how to make this work better? I'm not familiar with most of the tools I've been given.

    opened by Ultramonte 2
  • [SUGGESTION] per-scene processing

    [SUGGESTION] per-scene processing

    Hi there, this project is awesome so thanks for your - voluntary - work !

    Since GANs-based processing is quite heavy computing task, it could be very useful to split it into multiple "segments" to allow parallel/scalable/collaborative/resumable instances.

    We suggest you to check @master-of-zen's Av1an framework, wich implements it.

    Hope that inspires.

    opened by forart 1
Releases(models)
Owner
I like Google Colab and Python.
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
22 Oct 14, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021