Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

Overview

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning

The predictive learning of spatiotemporal sequences aims to generate future images by learning from the historical context, where the visual dynamics are believed to have modular structures that can be learned with compositional subsystems.

First version at NeurIPS 2017

This repo first contains a PyTorch implementation of PredRNN (2017) [paper], a recurrent network with a pair of memory cells that operate in nearly independent transition manners, and finally form unified representations of the complex environment.

Concretely, besides the original memory cell of LSTM, this network is featured by a zigzag memory flow that propagates in both bottom-up and top-down directions across all layers, enabling the learned visual dynamics at different levels of RNNs to communicate.

New in PredRNN-V2 (2021)

This repo also includes the implementation of PredRNN-V2 (2021) [paper], which improves PredRNN in the following two aspects.

1. Memory Decoupling

We find that the pair of memory cells in PredRNN contain undesirable, redundant features, and thus present a memory decoupling loss to encourage them to learn modular structures of visual dynamics.

decouple

2. Reverse Scheduled Sampling

Reverse scheduled sampling is a new curriculum learning strategy for seq-to-seq RNNs. As opposed to scheduled sampling, it gradually changes the training process of the PredRNN encoder from using the previously generated frame to using the previous ground truth. Benefits: (1) It makes the training converge quickly by reducing the encoder-forecaster training gap. (2) It enforces the model to learn more from long-term input context.

rss

Evaluation in LPIPS

LPIPS is more sensitive to perceptual human judgments, the lower the better.

Moving MNIST KTH action
PredRNN 0.109 0.204
PredRNN-V2 0.071 0.139

Prediction examples

mnist

kth

radar

Get Started

  1. Install Python 3.7, PyTorch 1.3, and OpenCV 3.4.
  2. Download data. This repo contains code for two datasets: the Moving Mnist dataset and the KTH action dataset.
  3. Train the model. You can use the following bash script to train the model. The learned model will be saved in the --save_dir folder. The generated future frames will be saved in the --gen_frm_dir folder.
  4. You can get pretrained models from here.
cd mnist_script/
sh predrnn_mnist_train.sh
sh predrnn_v2_mnist_train.sh

cd kth_script/
sh predrnn_kth_train.sh
sh predrnn_v2_kth_train.sh

Citation

If you find this repo useful, please cite the following papers.

@inproceedings{wang2017predrnn,
  title={{PredRNN}: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal {LSTM}s},
  author={Wang, Yunbo and Long, Mingsheng and Wang, Jianmin and Gao, Zhifeng and Yu, Philip S},
  booktitle={Advances in Neural Information Processing Systems},
  pages={879--888},
  year={2017}
}

@misc{wang2021predrnn,
      title={{PredRNN}: A Recurrent Neural Network for Spatiotemporal Predictive Learning}, 
      author={Wang, Yunbo and Wu, Haixu and Zhang, Jianjin and Gao, Zhifeng and Wang, Jianmin and Yu, Philip S and Long, Mingsheng},
      year={2021},
      eprint={2103.09504},
      archivePrefix={arXiv},
}
Owner
THUML: Machine Learning Group @ THSS
Machine Learning Group, School of Software, Tsinghua University
THUML: Machine Learning Group @ THSS
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022