Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Overview

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Work accepted at NeurIPS'21 [paper, video].

If you use this code in an academic context, please cite our work:

@article{hagenaarsparedesvalles2021ssl,
  title={Self-Supervised Learning of Event-Based Optical Flow with Spiking Neural Networks},
  author={Hagenaars, Jesse and Paredes-Vall\'es, Federico and de Croon, Guido},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

This code allows for the reproduction of the experiments leading to the results in Section 4.1.

Usage

This project uses Python >= 3.7.3 and we strongly recommend the use of virtual environments. If you don't have an environment manager yet, we recommend pyenv. It can be installed via:

curl https://pyenv.run | bash

Make sure your ~/.bashrc file contains the following:

export PATH="$HOME/.pyenv/bin:$PATH"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"

After that, restart your terminal and run:

pyenv update

To set up your environment with pyenv first install the required python distribution and make sure the installation is successful (i.e., no errors nor warnings):

pyenv install -v 3.7.3

Once this is done, set up the environment and install the required libraries:

pyenv virtualenv 3.7.3 event_flow
pyenv activate event_flow

pip install --upgrade pip==20.0.2

cd event_flow/
pip install -r requirements.txt

Download datasets

In this work, we use multiple datasets:

These datasets can be downloaded in the expected HDF5 data format from here, and are expected at event_flow/datasets/data/ (as shown above).

Download size: 19.4 GB. Uncompressed size: 94 GB.

Details about the structure of these files can be found in event_flow/datasets/tools/.

Download models

The pretrained models can be downloaded from here, and are expected at event_flow/mlruns/.

In this project we use MLflow to keep track of the experiments. To visualize the models that are available, alongside other useful details and evaluation metrics, run the following from the home directory of the project:

mlflow ui

and access http://127.0.0.1:5000 from your browser of choice.

Inference

To estimate optical flow from event sequences from the MVSEC dataset and compute the average endpoint error and percentage of outliers, run:

python eval_flow.py <model_name> --config configs/eval_MVSEC.yml

# for example:
python eval_flow.py LIFFireNet --config configs/eval_MVSEC.yml

where <model_name> is the name of MLflow run to be evaluated. Note that, if a run does not have a name (this would be the case for your own trained models), you can evaluated it through its run ID (also visible through MLflow).

To estimate optical flow from event sequences from the ECD or HQF datasets, run:

python eval_flow.py <model_name> --config configs/eval_ECD.yml
python eval_flow.py <model_name> --config configs/eval_HQF.yml

# for example:
python eval_flow.py LIFFireNet --config configs/eval_ECD.yml

Note that the ECD and HQF datasets lack ground truth optical flow data. Therefore, we evaluate the quality of the estimated event-based optical flow via the self-supervised FWL (Stoffregen and Scheerlinck, ECCV'20) and RSAT (ours, Appendix C) metrics.

Results from these evaluations are stored as MLflow artifacts.

In configs/, you can find the configuration files associated to these scripts and vary the inference settings (e.g., number of input events, activate/deactivate visualization).

Training

Run:

python train_flow.py --config configs/train_ANN.yml
python train_flow.py --config configs/train_SNN.yml

to train an traditional artificial neural network (ANN, default: FireNet) or a spiking neural network (SNN, default: LIF-FireNet), respectively. In configs/, you can find the aforementioned configuration files and vary the training settings (e.g., model, number of input events, activate/deactivate visualization). For other models available, see models/model.py.

Note that we used a batch size of 8 in our experiments. Depending on your computational resources, you may need to lower this number.

During and after the training, information about your run can be visualized through MLflow.

Uninstalling pyenv

Once you finish using our code, you can uninstall pyenv from your system by:

  1. Removing the pyenv configuration lines from your ~/.bashrc.
  2. Removing its root directory. This will delete all Python versions that were installed under the $HOME/.pyenv/versions/ directory:
rm -rf $HOME/.pyenv/
Owner
TU Delft
TU Delft - MAVLab
TU Delft
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022