The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Overview

Likelihood-Free Inference in State-Space Models with Unknown Dynamics

This package contains the codes required to run the experiments in the paper. The simulators used for the State-Space Models in the experiments are implemented based on Engine for Likelihood-free Inference (ELFI) models.

Installation

We recommend using an Anaconda environment. To create and activate the conda environment with all dependencies installed, run:

conda create -c conda-forge --name env --file lfi-requirements.txt
conda activate env
pip install -e .
pip install sbi blitz-bayesian-pytorch stable_baselines3

For the GP-SSM and PR-SSM methods, we recommend creating a separate environment, in which one should install tensorflow, and then clone the 'custom_multiouput' branch of the GPflow from https://github.com/ialong/GPflow. Once GPflow is installed, one should clone GPt from https://github.com/ialong/GPt and execute 'experiments/run_gpssms.py', the code will complete 30 repletions of experiments with tractable likelihoods.

Running the experiments

The experiment scripts can be found in the 'experiments/' folder. To run the experiments on one of the considered SSM, one should run the 'run_experiment.py' script with the following arguments (options are in the parentheses): --sim ('lgssm', 'toy', 'sv', 'umap', 'gaze'), --meth ('bnn', 'qehvi', 'blr', 'SNPE', 'SNLE', 'SNRE'), --seed (any seed number), --budget (available simulation budget for each new state), --tasks (number of tasks considered/ moving window size for LMC-BNN, LMC-qEHVI and LMC-BLR methods). For instance:

python3 experiments/run_experiment.py --sim=lgssm --meth=bolfi --seed=0 --budget=2 --tasks=2

The results will be saved in the corresponding folders 'experiments/[sim]/[meth]-w[tasks]-s[budget]/'. To build plots and output the results, one should run 'collect_plots.py' script with specified arguments: --type ('inf' in case of evaluating state inference quality or 'traj' in case of evaluating the generated trajectories), --tasks (the number of tasks used by the methods). For example:

python3 experiments/collect_results.py --type=inf --tasks=2

The plots with experiment results will be stored in 'experiments/plots'.

Implementing custom simulators

The simulators for all experiments can be found in elfi/examples. Example implementations used in the paper are found in gaze_selection.py, umap_tasks.py, LGSSM.py (LG), dynamic_toy_model.py (NN), and stochastic_volatility.py (SV). To create a new SSM, implement a new class that inherits from elfi.DynamicProcess with custom generating function for observations, create_model(), and update_dynamic().

The code for all methods can be found in 'elfi/methods/dynamic_parameter_inference.py' and 'elfi/methods/bo/mogp.py'.

Citation


Owner
Alex Aushev
Alex Aushev
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022