KaziText is a tool for modelling common human errors.

Related tags

Deep Learningkazitext
Overview

KaziText

KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatical error correction corpora in M2 format.

The tool was introduced in Understanding Model Robustness to User-generated Noisy Texts.

Requirements

A set of requirements is listed in requirements.txt. Moreover, UDPipe model has to be downloaded for used languages (see http://hdl.handle.net/11234/1-3131) and linked in udpipe_tokenizer.py.

Overview

KaziText defines a set of aspects located in aspects. These model following phenomena:

  • Casing Errors
  • Common Other Errors (for most common phrases)
  • Errors in Diacritics
  • Punctuation Errors
  • Spelling Errors
  • Errors in wrongly used suffix/prefix
  • Whitespace Errors
  • Word-Order Errors

Each aspect has a set of internal probabilities (e.g. the probability of a user typing first letter of a starting word in lower-case instead of upper-case) that are estimated from M2 GEC corpora.

A complete set of aspects with their internal probabilities is called profile. We provide precomputed profiles for Czech, English, Russian and German in profiles as json files. The profiles are additionally split into dev and test. Also there are 4 profiles for Czech and 2 profiles for English differing in the underlying user domain (e.g. natives vs second learners).

To noise a text using a profile, use:

python introduce_errors.py $infile $outfile $profile $lang 

introduce_errors.py script offers a variety of switches (run python introduce_errors.py --help to display them). One noteworthy is --alpha that serves for regulating final text error rate (set it to value lower than 1 to reduce number of errors; set to to value bigger than 1 to have more noisy texts). Apart for profiles themselves, we also precomputed set of alphas that are stored as .csv files in respective profiles folders and store values for alphas to reach 5-30 final text word error rates as well as so called reference-alpha word error rate that corresponds to the same error rate as the original M2 files the profile was estimated from had. To have for example noisy text at circa 5% word error rate noised by Romani profile, use --profile dev/cs_romi.json --alpha 0.2.

Moreover, we provide several scripts (noise*.py) for noising specific data formats.

To estimate a profile for given M2 file, run:

python estimate_all_ratios.py $m2_pattern outfile

To estimate normalization alphas file, see estimate_alpha.sh that describes iterative process of noising clean texts with an alpha, measuring text's noisiness and changing alpha respectively.

Other notes

  • Russian RULEC-GEC was normalized using normalize_russian_m2.py
Owner
ÚFAL
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University
ÚFAL
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023