Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Overview

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons

This repository contains the code to reproduce the results of the NeurIPS 2021 submission "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons" (also available on arXiv).

Requirements

To install requirements:

pip install -r requirements.txt

Training & Evaluation

Code for FC MNIST experiments (Fig.2b and 4ac)

The code can be found in fig2b_fig4ac_mnist/src/.

Running the experiments: For example, in order to run all the experiments needed to reproduce Fig. 2b, execute:

cd fig2b_fig4ac_mnist/src/
/bin/bash 2b_jobs.sh

The results of each run, that is for example metrics, output and configurations, will be saved in fig2b_fig4ac_mnist/runs/{run_number}/.

For the experiment in Fig.4 replace 2b_jobs.sh with 4a_jobs.sh or 4c_jobs.sh respectively

The seeds chosen for these experiments were 42 69 12345 98765 38274 28374 42848 48393 83475 57381.

Code for HIGGS, MNIST and CIFAR10 with and without LE (Fig. 2cde).

The code can be found in fig2cde_higgs_mnist_cifar10.

The code configuration is integrated into the main files and only a few parameters are configured via argparse.

To run the code, check the respective submit_python_*_v100.sh file which contains examples and all run configurations for all seeds used.

The seeds chosen for these experiments were 1, 2, 3, 5, 7, 8, 13, 21, 34. (Fibonacci + lucky number 7), resulting in 9 seeds for each experiment.

Results can be found in the respective log file produced from the std out of the running code via python -u *_training.py > file.log.

Code for Dendritic Microcircuits with and without LE (Fig.3 and 5)

The code can be found in fig3fig5_dendritic_microcircuits/src/.

The experiments are configured using config files. All config files required for the production of the plotted results are in fig3fig5_dendritic_microcircuits/experiment_configs/. The naming scheme of the config files is as follows {task name}_{with LE or not}_tpres_{tpres in unit dt}.yaml where task name is bars (Fig.3) or mimic (Fig.5) and with LE or not is either le or orig.

For each run the results will be saved in fig3fig5_dendritic_microcircuits/experiment_results/{config file name}_{timestamp}/.

To run an experiment:

cd fig3fig5_dendritic_microcircuits/src/
python3 run_bars.py train ../experiment_configs/{chosen_config_file}

For the experiment in Fig.5 replace run_bars.py with run_single_mc.py

To plot the results of a run:

cd fig3fig5_dendritic_microcircuits/src/
python3 run_bars.py eval ../experiment_results/{results_dir_of_run_to_be_evaluated}

This will generate plots of the results (depending on how many variables you configured to be recorded, more or less plots can be generated) and save them in the respective results directory. Which plots are plotted is defined in run_X.py

Reproduce all data needed for Fig3:

For the results shown in Fig.3 all config files with the name bars_*.yaml need to be run for 10 different seeds (configurable in the config file). The seeds chosen for these experiments were 12345, 12346, 12347, 12348, 12349, 12350, 12351, 12352, 12353, 12354.

Contributing

📋 TODO: Pick a licence and describe how to contribute to your code repository.

Owner
Computational Neuroscience, University of Bern
Computational Neuroscience, University of Bern
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021