Learning to Prompt for Vision-Language Models.

Related tags

Deep LearningCoOp
Overview

CoOp

Paper: Learning to Prompt for Vision-Language Models

Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu

CoOp (Context Optimization) is a differentiable approach that focuses on continuous prompt learning to facilitate deployment of pre-trained vision language models (like CLIP) in downstream datasets.

Updates

  • 15.10.2021: We find that the best_val model and the last_step model achieve similar performance, so we set TEST.FINAL_MODEL = "last_step" for all datasets to save training time. Why we used best_val: the (tiny) validation set was designed for the linear probe approach, which requires extensive tuning for its hyperparameters, so we used the best_val model for CoOp as well for fair comparison (in this way, both approaches have access to the validation set).

  • 09.10.2021: Important changes are made to Dassl's transforms.py. Please pull the latest commits from https://github.com/KaiyangZhou/Dassl.pytorch and this repo to make sure the code works properly. In particular, 1) center_crop now becomes a default transform in testing (applied after resizing the smaller edge to a certain size to keep the image aspect ratio), and 2) for training, Resize(cfg.INPUT.SIZE) is deactivated when random_crop or random_resized_crop is used. Please read this issue on how these changes might affect the performance.

  • 18.09.2021: We have fixed an error in Dassl which could cause a training data loader to have zero length (so no training will be performed) when the dataset size is smaller than the batch size (due to drop_last=True). Please pull the latest commit for Dassl (>= 8eecc3c). This error led to lower results for CoOp in EuroSAT's 1- and 2-shot settings (others are all correct). We will update the paper on arxiv to fix this error.

How to Install

This code is built on top of the awesome toolbox Dassl.pytorch so you need to install the dassl environment first. Simply follow the instructions described here to install dassl as well as PyTorch. After that, run pip install -r requirements.txt under CoOp/ to install a few more packages required by CLIP (this should be done when dassl is activated). Then, you are ready to go.

Follow DATASETS.md to install the datasets.

How to Run

We provide the running scripts in scripts/. Make sure you change the path in DATA and run the commands under CoOp/scripts/.

Few-Shot Learning

All you need is CoOp/scripts/main.sh, which contains six input arguments.

DATASET takes as input a dataset name, like imagenet or caltech101. The valid names are the files' names in CoOp/configs/datasets/.

CFG means which config file to use, such as rn50, rn101 or vit_b32 (see CoOp/configs/trainers/CoOp/). Note that for ImageNet, we use CoOp/configs/trainers/CoOp/*_ep50.yaml for all settings (please follow the implementation details shown in the paper).

Below we provide examples on how to run CoOp on Caltech101.

CLIP + CoOp (M=16, end):

  • 1 shot: bash main.sh caltech101 rn50_ep50 end 16 1 False
  • 2 shots: bash main.sh caltech101 rn50_ep100 end 16 2 False
  • 4 shots: bash main.sh caltech101 rn50_ep100 end 16 4 False
  • 8 shots: bash main.sh caltech101 rn50 end 16 8 False
  • 16 shots: bash main.sh caltech101 rn50 end 16 16 False

CLIP + CoOp (M=16, mid):

  • 1 shot: bash main.sh caltech101 rn50_ep50 middle 16 1 False
  • 2 shots: bash main.sh caltech101 rn50_ep100 middle 16 2 False
  • 4 shots: bash main.sh caltech101 rn50_ep100 middle 16 4 False
  • 8 shots: bash main.sh caltech101 rn50 middle 16 8 False
  • 16 shots: bash main.sh caltech101 rn50 middle 16 16 False

CLIP + CoOp (M=16, end, CSC):

  • 1 shot: bash main.sh caltech101 rn50_ep50 end 16 1 True
  • 2 shots: bash main.sh caltech101 rn50_ep100 end 16 2 True
  • 4 shots: bash main.sh caltech101 rn50_ep100 end 16 4 True
  • 8 shots: bash main.sh caltech101 rn50 end 16 8 True
  • 16 shots: bash main.sh caltech101 rn50 end 16 16 True

CLIP + CoOp (M=16, mid, CSC):

  • 1 shot: bash main.sh caltech101 rn50_ep50 middle 16 1 True
  • 2 shots: bash main.sh caltech101 rn50_ep100 middle 16 2 True
  • 4 shots: bash main.sh caltech101 rn50_ep100 middle 16 4 True
  • 8 shots: bash main.sh caltech101 rn50 middle 16 8 True
  • 16 shots: bash main.sh caltech101 rn50 middle 16 16 True

After the experiments are finished, you can use parse_test_res.py to calculate the average results instead of manually looking into the log files. Say the structure of output/ is

output
|–– caltech101/
|   |–– CoOp/
|   |   |–– rn50_16shots/
|   |   |   |–– nctx16_cscFalse_ctpend/
|   |   |   |   |–– seed1/
|   |   |   |   |–– seed2/
|   |   |   |   |–– seed3/
|   |   |–– rn50_8shots/
|   |   |   |–– nctx16_cscFalse_ctpend/
|   |   |   |   |–– seed1/
|   |   |   |   |–– seed2/
|   |   |   |   |–– seed3/

To calculate the average results for the folder rn50_16shots/nctx16_cscFalse_ctpend/, you can run

python parse_test_res.py output/caltech101/CoOp/rn50_16shots/nctx16_cscFalse_ctpend

Then, you will see something like this in your terminal

Parsing files in output/caltech101/CoOp/rn50_16shots/nctx16_cscFalse_ctpend
file: output/caltech101/CoOp/rn50_16shots/nctx16_cscFalse_ctpend/seed1/log.txt. accuracy: 91.81%. error: 8.19%.
file: output/caltech101/CoOp/rn50_16shots/nctx16_cscFalse_ctpend/seed2/log.txt. accuracy: 92.01%. error: 7.99%.
file: output/caltech101/CoOp/rn50_16shots/nctx16_cscFalse_ctpend/seed3/log.txt. accuracy: 92.17%. error: 7.83%.
===
Summary of directory: output/caltech101/CoOp/rn50_16shots/nctx16_cscFalse_ctpend
* accuracy: 92.00% +- 0.15%
* error: 8.00% +- 0.15%
===

How to initialize the context tokens with pre-trained word vectors? Specify the words for the parameter TRAINER.COOP.CTX_INIT in your config file. In our paper, we use configs/trainers/rn50_ctxv1.yaml (give this file to --config-file, see scripts/main.sh), which uses "a photo of a" as the initialization words.

How to visualize nearest words for the learned context tokens? All you need is interpret_prompt.py. Say the learned tokens are saved in a/b/c/prompt_learner/model.pth.tar and you would like to see the top-3 nearest words for each token. In this case, run python interpret_prompt.py a/b/c/prompt_learner/model.pth.tar 3

Robustness to Distribution Shift

To reproduce the robustness experiments, you can simply load the models learned on ImageNet and evaluate them on the following datasets: imagenetv2, imagenet-sketch, imagenet-a and imagenet-r.

The command is provided in CoOp/scripts/eval.sh. The key arguments are --model-dir, --load-epoch and --eval-only. --model-dir indicates the directory where the models are saved (i.e. the entire folder containing log.txt, the tensorboard file and prompt_learner/). --load-epoch tells the code to load the model saved at a specific epoch, like --load-epoch 50 for ImageNet (see the source code for more details).

For example, to evaluate CLIP + CoOp (M=16, end) on ImageNetV2, you can do

# Don't need to use rn5_ep50 here as no training is performed
bash eval.sh imagenetv2 rn50

The default setting is SHOTS=16. Feel free to modify the script.

Again, you can use parse_test_res.py to automate the calculation of average performance. This time you should append --test-log, e.g., python parse_test_res.py directory --test-log.

Zero-Shot CLIP

See CoOp/scripts/zeroshot.sh.

Linear Probe CLIP

Please move to lpclip/.

How to Cite CoOp

If you use this code in your research, please kindly cite the following paper

@article{zhou2021coop,
    title={Learning to Prompt for Vision-Language Models},
    author={Zhou, Kaiyang and Yang, Jingkang and Loy, Chen Change and Liu, Ziwei},
    journal={arXiv preprint arXiv:2109.01134},
    year={2021}
}
Owner
Kaiyang
Kaiyang
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023