Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Overview

Variational Gibbs inference (VGI)

This repository contains the research code for

Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs inference for statistical model estimation from incomplete data.

The code is shared for reproducibility purposes and is not intended for production use. It should also serve as a reference implementation for anyone wanting to use VGI for model estimation from incomplete data.

Abstract

Statistical models are central to machine learning with broad applicability across a range of downstream tasks. The models are typically controlled by free parameters that are estimated from data by maximum-likelihood estimation. However, when faced with real-world datasets many of the models run into a critical issue: they are formulated in terms of fully-observed data, whereas in practice the datasets are plagued with missing data. The theory of statistical model estimation from incomplete data is conceptually similar to the estimation of latent-variable models, where powerful tools such as variational inference (VI) exist. However, in contrast to standard latent-variable models, parameter estimation with incomplete data often requires estimating exponentially-many conditional distributions of the missing variables, hence making standard VI methods intractable. We address this gap by introducing variational Gibbs inference (VGI), a new general-purpose method to estimate the parameters of statistical models from incomplete data.

VGI demo

We invite the readers of the paper to also see the Jupyter notebook, where we demonstrate VGI on two statistical models and animate the learning process to help better understand the method.

Below is an animation from the notebook of a Gaussian Mixture Model fitted from incomplete data using the VGI algorithm (left), and the variational Gibbs conditional approximations (right) throughout iterations.

demo_vgi_mog_fit.mp4

Dependencies

Install python dependencies from conda and the cdi project package with

conda env create -f environment.yml
conda activate cdi
python setup.py develop

If the dependencies in environment.yml change, update dependencies with

conda env update --file environment.yml

Summary of the repository structure

Data

All data used in the paper are stored in data directory and the corresponding data loaders can be found in cdi/data directory.

Method code

The main code to the various methods used in the paper can be found in cdi/trainers directory.

  • trainer_base.py implements the main data loading and preprocessing code.
  • variational_cdi.py and cdi.py implement the key code for variational Gibbs inference (VGI).
  • mcimp.py implements the code for variational block-Gibbs inference (VBGI) used in the VAE experiments.
  • The other scripts in cdi/trainers implement the comparison methods and variational conditional pre-training.

Statistical models

The code for the statistical (factor analysis, VAEs, and flows) and the variational models are located in cdi/models.

Configuration files

The experiment_configs directory contains the configuration files for all experiments. The config files include all the hyperparameter settings necessary to reproduce our results. The config files are in a json format. They are passed to the main running script as a command-line argument and values in them can be overriden with additional command-line arguments.

Run scripts

train.py is the main code we use to run the experiments, and test.py is the main script to produce analysis results presented in the paper.

Analysis code

The Jupyter notebooks in notebooks directory contain the code which was used to analysis the method and produce figures in the paper. You should also be able to use these notebooks to find the corresponding names of the config files for the experiments in the paper.

Running the code

Before running any code you'll need to activate the cdi conda environment (and make sure you've installed the dependencies)

conda activate cdi

Model fitting

To train a model use the train.py script, for example, to fit a rational-quadratic spline flow on 50% missing MiniBooNE dataset

python train.py --config=experiment_configs/flows_uci/learning_experiments/3/rqcspline_miniboone_chrqsvar_cdi_uncondgauss.json

Any parameters set in the config file can be overriden by passing additionals command-line arguments, e.g.

python train.py --config=experiment_configs/flows_uci/learning_experiments/3/rqcspline_miniboone_chrqsvar_cdi_uncondgauss.json --data.total_miss=0.33

Optional variational model warm-up

Some VGI experiments use variational model "warm-up", which pre-trains the variational model on observed data as probabilistic regressors. The experiment configurations for these runs will have var_pretrained_model set to the name of the pre-trained model. To run the corresponding pre-training script run, e.g.

python train.py --config=experiment_configs/flows_uci/learning_experiments/3/miniboone_chrqsvar_pretraining_uncondgauss.json

Running model evaluation

For model evaluation use test.py with the corresponding test config, e.g.

python test.py --test_config=experiment_configs/flows_uci/eval_loglik/3/rqcspline_miniboone_chrqsvar_cdi_uncondgauss.json

This will store all results in a file that we then analyse in the provided notebook.

For the VAE evaluation, where variational distribution fine-tuning is required for test log-likelihood evaluation use retrain_all_ckpts_on_test_and_run_test.py.

Using this codebase on your own task

While the main purpose of this repository is reproducibility of the research paper and a demonstration of the method, you should be able to adapt the code to fit your statistical models. We would advise you to first see the Jupyter notebook demo. The notebook provides an example of how to implement the target statistical model as well as the variational model of the conditionals, you can find further examples in cdi/models directory. If you intend to use a variational family that is different to ours you will also need to implement the corresponding sampling functions here.

Owner
Vaidotas Šimkus
PhD candidate in Data Science at the University of Edinburgh. Interested in deep generative models, variational inference, and the Bayesian principle.
Vaidotas Šimkus
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022