(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

Related tags

Deep LearningClassSR
Overview

ClassSR

(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

Paper

Authors: Xiangtao Kong, Hengyuan Zhao, Yu Qiao, Chao Dong

Dependencies

Codes

  • Our codes version based on BasicSR.

How to test a single branch

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the testing datasets (DIV2K_valid).

  2. Download the divide_val.log and move it to .codes/data_scripts/.

  3. Generate simple, medium, hard (class1, class2, class3) validation data.

cd codes/data_scripts
python extract_subimages_test.py
python divide_subimages_test.py
  1. Download pretrained models and move them to ./experiments/pretrained_models/ folder.

  2. Run testing for a single branch.

cd codes
python test.py -opt options/test/test_FSRCNN.yml
python test.py -opt options/test/test_CARN.yml
python test.py -opt options/test/test_SRResNet.yml
python test.py -opt options/test/test_RCAN.yml
  1. The output results will be sorted in ./results.

How to test ClassSR

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the testing datasets (DIV8K). Test8K contains the images (index 1401-1500) from DIV8K. Test2K/4K contain the images (index 1201-1300/1301-1400) from DIV8K which are downsampled to 2K and 4K resolution.

  2. Download pretrained models and move them to ./experiments/pretrained_models/ folder.

  3. Run testing for ClassSR.

cd codes
python test_ClassSR.py -opt options/test/test_ClassSR_FSRCNN.yml
python test_ClassSR.py -opt options/test/test_ClassSR_CARN.yml
python test_ClassSR.py -opt options/test/test_ClassSR_SRResNet.yml
python test_ClassSR.py -opt options/test/test_ClassSR_RCAN.yml
  1. The output results will be sorted in ./results.

How to train a single branch

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the training datasets(DIV2K) and validation dataset(Set5).

  2. Download the divide_train.log and move it to .codes/data_scripts/.

  3. Generate simple, medium, hard (class1, class2, class3) training data.

cd codes/data_scripts
python data_augmentation.py
python extract_subimages_train.py
python divide_subimages_train.py
  1. Run training for a single branch (default branch1, the simplest branch).
cd codes
python train.py -opt options/train/train_FSRCNN.yml
python train.py -opt options/train/train_CARN.yml
python train.py -opt options/train/train_SRResNet.yml
python train.py -opt options/train/train_RCAN.yml
  1. The experiments will be sorted in ./experiments.

How to train ClassSR

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the training datasets (DIV2K) and validation dataset(DIV2K_valid, index 801-810).

  2. Generate training data (the all data(1.59M) in paper).

cd codes/data_scripts
python data_augmentation.py
python extract_subimages_ClassSR.py
  1. Download pretrained models(pretrained branches) and move them to ./experiments/pretrained_models/ folder.

  2. Run training for ClassSR.

cd codes
python train_ClassSR.py -opt options/train/train_ClassSR_FSRCNN.yml
python train_ClassSR.py -opt options/train/train_ClassSR_CARN.yml
python train_ClassSR.py -opt options/train/train_ClassSR_SRResNet.yml
python train_ClassSR.py -opt options/train/train_ClassSR_RCAN.yml
  1. The experiments will be sorted in ./experiments.

Contact

Email: [email protected]

Owner
Xiangtao Kong
Xiangtao Kong
For storing the complete exploration of Visual Question Answering for our B.Tech Project

Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio

Harsh Raj 3 Jun 16, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021