Spatial Sparse Convolution Library

Overview

SpConv: Spatially Sparse Convolution Library

Build Status

PyPI Install Downloads
CPU (Linux Only) PyPI Version pip install spconv pypi monthly download
CUDA 10.2 PyPI Version pip install spconv-cu102 pypi monthly download
CUDA 11.1 PyPI Version pip install spconv-cu111 pypi monthly download
CUDA 11.3 (Linux Only) PyPI Version pip install spconv-cu113 pypi monthly download
CUDA 11.4 PyPI Version pip install spconv-cu114 pypi monthly download

spconv is a project that provide heavily-optimized sparse convolution implementation with tensor core support. check benchmark to see how fast spconv 2.x runs.

Spconv 1.x code. We won't provide any support for spconv 1.x since it's deprecated. use spconv 2.x if possible.

Check spconv 2.x algorithm introduction to understand sparse convolution algorithm in spconv 2.x!

WARNING spconv < 2.1.4 users need to upgrade your version to 2.1.4, it fix a serious bug in SparseInverseConvXd.

Breaking changes in Spconv 2.x

Spconv 1.x users NEED READ THIS before using spconv 2.x.

Spconv 2.1 vs Spconv 1.x

  • spconv now can be installed by pip. see install section in readme for more details. Users don't need to build manually anymore!
  • Microsoft Windows support (only windows 10 has been tested).
  • fp32 (not tf32) training/inference speed is increased (+50~80%)
  • fp16 training/inference speed is greatly increased when your layer support tensor core (channel size must be multiple of 8).
  • int8 op is ready, but we still need some time to figure out how to run int8 in pytorch.
  • doesn't depend on pytorch binary, but you may need at least pytorch >= 1.6.0 to run spconv 2.x.
  • since spconv 2.x doesn't depend on pytorch binary (never in future), it's impossible to support torch.jit/libtorch inference.

Spconv 2.x Development and Roadmap

Spconv 2.2 development has started. See this issue for more details.

See dev plan. A complete guide of spconv development will be released soon.

Usage

Firstly you need to use import spconv.pytorch as spconv in spconv 2.x.

Then see this.

Don't forget to check performance guide.

Install

You need to install python >= 3.6 (>=3.7 for windows) first to use spconv 2.x.

You need to install CUDA toolkit first before using prebuilt binaries or build from source.

You need at least CUDA 10.2 to build and run spconv 2.x. We won't offer any support for CUDA < 10.2.

Prebuilt

We offer python 3.6-3.10 and cuda 10.2/11.1/11.3/11.4 prebuilt binaries for linux (manylinux).

We offer python 3.7-3.10 and cuda 10.2/11.1/11.4 prebuilt binaries for windows 10/11.

We will provide prebuilts for CUDA versions supported by latest pytorch release. For example, pytorch 1.10 provide cuda 10.2 and 11.3 prebuilts, so we provide them too.

For Linux users, you need to install pip >= 20.3 first to install prebuilt.

CUDA 11.1 will be removed in spconv 2.2 because pytorch 1.10 don't provide prebuilts for it.

pip install spconv for CPU only (Linux Only). you should only use this for debug usage, the performance isn't optimized due to manylinux limit (no omp support).

pip install spconv-cu102 for CUDA 10.2

pip install spconv-cu111 for CUDA 11.1

pip install spconv-cu113 for CUDA 11.3 (Linux Only)

pip install spconv-cu114 for CUDA 11.4

NOTE It's safe to have different minor cuda version between system and conda (pytorch) in Linux. for example, you can use spconv-cu114 with anaconda version of pytorch cuda 11.1 in a OS with CUDA 11.2 installed.

NOTE In Linux, you can install spconv-cuxxx without install CUDA to system! only suitable NVIDIA driver is required. for CUDA 11, we need driver >= 450.82.

Build from source for development (JIT, recommend)

The c++ code will be built automatically when you change c++ code in project.

For NVIDIA Embedded Platforms, you need to specify cuda arch before build: export CUMM_CUDA_ARCH_LIST="7.2" for xavier.

You need to remove cumm in requires section in pyproject.toml after install editable cumm and before install spconv due to pyproject limit (can't find editable installed cumm).

Linux

  1. uninstall spconv and cumm installed by pip
  2. install build-essential, install CUDA
  3. git clone https://github.com/FindDefinition/cumm, cd ./cumm, pip install -e .
  4. git clone https://github.com/traveller59/spconv, cd ./spconv, pip install -e .
  5. in python, import spconv and wait for build finish.

Windows

  1. uninstall spconv and cumm installed by pip
  2. install visual studio 2019 or newer. make sure C++ development component is installed. install CUDA
  3. set powershell script execution policy
  4. start a new powershell, run tools/msvc_setup.ps1
  5. git clone https://github.com/FindDefinition/cumm, cd ./cumm, pip install -e .
  6. git clone https://github.com/traveller59/spconv, cd ./spconv, pip install -e .
  7. in python, import spconv and wait for build finish.

Build wheel from source (not recommend, this is done in CI.)

You need to rebuild cumm first if you are build along a CUDA version that not provided in prebuilts.

Linux

  1. install build-essential, install CUDA
  2. run export SPCONV_DISABLE_JIT="1"
  3. run pip install pccm cumm wheel
  4. run python setup.py bdist_wheel+pip install dists/xxx.whl

Windows

  1. install visual studio 2019 or newer. make sure C++ development component is installed. install CUDA
  2. set powershell script execution policy
  3. start a new powershell, run tools/msvc_setup.ps1
  4. run $Env:SPCONV_DISABLE_JIT = "1"
  5. run pip install pccm cumm wheel
  6. run python setup.py bdist_wheel+pip install dists/xxx.whl

Note

The work is done when the author is an employee at Tusimple.

LICENSE

Apache 2.0

Owner
Yan Yan
Yan Yan
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Sudoku solver - A sudoku solver with python

sudoku_solver A sudoku solver What is Sudoku? Sudoku (Japanese: 数独, romanized: s

Sikai Lu 0 May 22, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022