Action Recognition for Self-Driving Cars

Overview

Action Recognition for Self-Driving Cars

demo img

This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at EPFL VITA lab. For experiment results, please refer to the project report and presenation slides at docs. A demo video is available here.

This project utilizes a simple yet effective architecture (called poseact) to classify multiple actions.

The model has been tested on three datasets, TCG, TITAN and CASR.

drawing

Preparation and Installation

This project mainly depends PyTorch. If you wish to start from extracting poses from images, you would also need OpenPifPaf (along with posetrack plugin), please also refer to this section for following steps. In case you wish to skip extracting your own poses, and directly start from the poses used in this repo, you can download this folder. It contains the poses extracted from TITAN and CASR dataset as well as a trained model for TITAN dataset. For the poses in TCG dataset, please refer to the official repo.

First, clone and install this repo. If you have downloaded the folder above, please put the contents to poseact/out/

Then clone this repo and install in editable mode.

git clone https://github.com/vita-epfl/pose-action-recognition.git
cd Action_Recognition
python -m pip install -e .

Project Structure and usage

poseact
	|___ data # create this folder to store your datasets, or create a symlink 
	|___ models 
	|___ test # debug tests, may also be helpful for basic usage
	|___ tools # preprocessing and analyzing tools, usage stated in the scripts 
	|___ utils # utility functions, such as datasets, losses and metrics 
	|___ xxxx_train.py # training scripts for TCG, TITAN and CASR
	|___ python_wrapper.sh # script for submitting jobs to EPFL IZAR cluster, same for debug.sh
	|___ predictor.py  # a visualization tool with the model trained on TITAN dataset 

It's advised to cd poseact and conda activate pytorch before running the experiments.

To submit jobs to EPFL IZAR cluster (or similar clusters managed by slurm), you can use the script python_wrapper.sh. Just think of it as "the python on the cluster". To submit to debug node of IZAR, you can use the debug.sh

Here is an example to train a model on TITAN dataset. --imbalance focal means using the focal loss, --gamma 0 sets the gamma value of focal loss to 0 (because I find 0 is better :=), --merge_cls means selecting a suitable set of actions from the original actions hierarchy, and--relative_kp means using relative coordinates of the keypoints, see the presentation slides for intuition. You can specify a name for this task with --task_name, which will be used to name the saved model if you use --save_model.

sbatch python_wrapper.sh titan_train.py --imbalance focal --gamma 0 --merge_cls --relative_kp --task_name Relative_KP --save_model

To use the temporal model, you can use --model_type sequence, and maybe you will need to adjust the number of epochs, batch size and learning rate. To use pifpaf track ID instead of ground truth track ID, you can use --track_method pifpaf .

sbatch python_wrapper.sh titan_train.py --model_type sequence --num_epoch 100 --imbalance focal --track_method gt --batch_size 128 --gamma 0 --lr 0.001

For all available training options, please refer to the comments and docstrings in the training scripts.

All the datasets have "train-validate-test" setup, so after the training, you should be able to see a summary of evaluation.

Here is an example

In general, overall accuracy 0.8614 avg Jaccard 0.6069 avg F1 0.7409

For valid_action actions accuracy 0.8614 Jaccard score 0.6069 f1 score 0.9192 mAP 0.7911
Precision for each class: [0.885 0.697 0.72  0.715 0.87]
Recall for each class: [0.956 0.458 0.831 0.549 0.811]
F1 score for each class: [0.919 0.553 0.771 0.621 0.839]
Average Precision for each class is [0.9687, 0.6455, 0.8122, 0.6459, 0.883]
Confusion matrix (elements in a row share the same true label, those in the same columns share predicted):
The corresponding classes are {'walking': 0, 'standing': 1, 'sitting': 2, 'bending': 3, 'biking': 4, 'motorcycling': 4}
[[31411  1172    19   142   120]
 [ 3556  3092    12    45    41]
 [   12     1   157     0    19]
 [  231   160     3   512    26]
 [  268     9    27    17  1375]]

After training and saving the model (to out/trained/), you can use the predictor to visualize results on TITAN (all sequences). Feel free to change the chekpoint to your own trained model, but only the file name is needed, because models are assumed to be out/trained

sbatch python_wrapper.sh predictor.py --function titanseqs --save_dir out/recognition --ckpt TITAN_Relative_KP803217.pth

It's also possible to run on a single sequence with --function titan_single --seq_idx <Number>

or run on a single image with --function image --image_path <path/to/your/image.png>

More about the TITAN dataset

For the TITAN dataset, we first extract poses from the images with OpenPifPaf, and then match the poses to groundtruth accoding to IOU of bounding boxes. After that, we store the poses sequence by sequence, frame by frame, person by person, and you will find corresponding classes in titan_dataset.py.

Preparing poses for TITAN and CASR

This part may be a bit cumbersome and it's advised to use the prepared poses in this folder. If you want to extract the poses yourself, please also download that folder, because poseact/out/titan_clip/example.png is needed as the input to OpenPifPaf.

First, install OpenPifPaf and the posetrack plugin.

For TITAN, download the dataset to poseact/data/TITAN and then

cd poseact
conda activate pytorch # activate the python environment
# run single frame pose detection , wait for the program to complete
sbatch python_wrapper.sh tools/run_pifpaf_on_titan.py --mode single --n_process 6
# run pose tracking, required for temporal model with pifpaf track ID, wait for the program to complete
sbatch python_wrapper.sh tools/run_pifpaf_on_titan.py --mode track --n_process 6
# make the pickle file for single frame model 
python utils/titan_dataset.py --function pickle --mode single
# make the pickle file from pifpaf posetrack result
python utils/titan_dataset.py --function pickle --mode track 

For CASR, you should agree with the terms and conditions required by the authors of CASR

CASR dataset needs some preprocessing, please create the folder poseact/scratch (or link to the scratch on IZAR) and then

cd poseact
conda activate pytorch # activate the python environment
sbatch tools/casr_download.sh # wait for the whole process to complete, takes a long time 
sbatch python_wrapper.sh tools/run_pifpaf_on_casr.py --n_process 6 # wait for this process to complete, again a long time 
python ./utils/casr_dataset.py # now you should have the file out/CASR_pifpaf.pkl

Credits

The poses are extracted with OpenPifPaf.

The model is inspired by MonoLoco and the heuristics are from this work

The code for TCG dataset is adopted from the official repo.

Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023