SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

Overview

SOLO: Segmenting Objects by Locations

This project hosts the code for implementing the SOLO algorithms for instance segmentation.

SOLO: Segmenting Objects by Locations,
Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, Lei Li
In: Proc. European Conference on Computer Vision (ECCV), 2020
arXiv preprint (arXiv 1912.04488)

SOLOv2: Dynamic and Fast Instance Segmentation,
Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, Chunhua Shen
In: Proc. Advances in Neural Information Processing Systems (NeurIPS), 2020
arXiv preprint (arXiv 2003.10152)

highlights

Highlights

  • Totally box-free: SOLO is totally box-free thus not being restricted by (anchor) box locations and scales, and naturally benefits from the inherent advantages of FCNs.
  • Direct instance segmentation: Our method takes an image as input, directly outputs instance masks and corresponding class probabilities, in a fully convolutional, box-free and grouping-free paradigm.
  • High-quality mask prediction: SOLOv2 is able to predict fine and detailed masks, especially at object boundaries.
  • State-of-the-art performance: Our best single model based on ResNet-101 and deformable convolutions achieves 41.7% in AP on COCO test-dev (without multi-scale testing). A light-weight version of SOLOv2 executes at 31.3 FPS on a single V100 GPU and yields 37.1% AP.

Updates

  • SOLOv2 implemented on detectron2 is released at adet. (07/12/20)
  • Training speeds up (~1.7x faster) for all models. (03/12/20)
  • SOLOv2 is available. Code and trained models of SOLOv2 are released. (08/07/2020)
  • Light-weight models and R101-based models are available. (31/03/2020)
  • SOLOv1 is available. Code and trained models of SOLO and Decoupled SOLO are released. (28/03/2020)

Installation

This implementation is based on mmdetection(v1.0.0). Please refer to INSTALL.md for installation and dataset preparation.

Models

For your convenience, we provide the following trained models on COCO (more models are coming soon). If you need the models in PaddlePaddle framework, please refer to paddlepaddle/README.md.

Model Multi-scale training Testing time / im AP (minival) Link
SOLO_R50_1x No 77ms 32.9 download
SOLO_R50_3x Yes 77ms 35.8 download
SOLO_R101_3x Yes 86ms 37.1 download
Decoupled_SOLO_R50_1x No 85ms 33.9 download
Decoupled_SOLO_R50_3x Yes 85ms 36.4 download
Decoupled_SOLO_R101_3x Yes 92ms 37.9 download
SOLOv2_R50_1x No 54ms 34.8 download
SOLOv2_R50_3x Yes 54ms 37.5 download
SOLOv2_R101_3x Yes 66ms 39.1 download
SOLOv2_R101_DCN_3x Yes 97ms 41.4 download
SOLOv2_X101_DCN_3x Yes 169ms 42.4 download

Light-weight models:

Model Multi-scale training Testing time / im AP (minival) Link
Decoupled_SOLO_Light_R50_3x Yes 29ms 33.0 download
Decoupled_SOLO_Light_DCN_R50_3x Yes 36ms 35.0 download
SOLOv2_Light_448_R18_3x Yes 19ms 29.6 download
SOLOv2_Light_448_R34_3x Yes 20ms 32.0 download
SOLOv2_Light_448_R50_3x Yes 24ms 33.7 download
SOLOv2_Light_512_DCN_R50_3x Yes 34ms 36.4 download

Disclaimer:

  • Light-weight means light-weight backbone, head and smaller input size. Please refer to the corresponding config files for details.
  • This is a reimplementation and the numbers are slightly different from our original paper (within 0.3% in mask AP).

Usage

A quick demo

Once the installation is done, you can download the provided models and use inference_demo.py to run a quick demo.

Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM}

Example: 
./tools/dist_train.sh configs/solo/solo_r50_fpn_8gpu_1x.py  8

Train with single GPU

python tools/train.py ${CONFIG_FILE}

Example:
python tools/train.py configs/solo/solo_r50_fpn_8gpu_1x.py

Testing

# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM}  --show --out  ${OUTPUT_FILE} --eval segm

Example: 
./tools/dist_test.sh configs/solo/solo_r50_fpn_8gpu_1x.py SOLO_R50_1x.pth  8  --show --out results_solo.pkl --eval segm

# single-gpu testing
python tools/test_ins.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --show --out  ${OUTPUT_FILE} --eval segm

Example: 
python tools/test_ins.py configs/solo/solo_r50_fpn_8gpu_1x.py  SOLO_R50_1x.pth --show --out  results_solo.pkl --eval segm

Visualization

python tools/test_ins_vis.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --show --save_dir  ${SAVE_DIR}

Example: 
python tools/test_ins_vis.py configs/solo/solo_r50_fpn_8gpu_1x.py  SOLO_R50_1x.pth --show --save_dir  work_dirs/vis_solo

Contributing to the project

Any pull requests or issues are welcome.

Citations

Please consider citing our papers in your publications if the project helps your research. BibTeX reference is as follows.

@inproceedings{wang2020solo,
  title     =  {{SOLO}: Segmenting Objects by Locations},
  author    =  {Wang, Xinlong and Kong, Tao and Shen, Chunhua and Jiang, Yuning and Li, Lei},
  booktitle =  {Proc. Eur. Conf. Computer Vision (ECCV)},
  year      =  {2020}
}

@article{wang2020solov2,
  title={SOLOv2: Dynamic and Fast Instance Segmentation},
  author={Wang, Xinlong and Zhang, Rufeng and  Kong, Tao and Li, Lei and Shen, Chunhua},
  journal={Proc. Advances in Neural Information Processing Systems (NeurIPS)},
  year={2020}
}

License

For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact Xinlong Wang and Chunhua Shen.

Owner
Xinlong Wang
Xinlong Wang
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Alex Parinov 694 Nov 23, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022