Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

Overview

HyFactor

Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source architecture HyFactor which is inspired by previously reported DEFactor architecture and based on hydrogen labeled graphs. Since the original DEFactor code was not available, its updated implementation (ReFactor) was prepared in this work for benchmarking purposes.

For more details please refer to the paper

If you are using this repository in your paper, please cite us as:

Akhmetshin T, Lin A, Mazitov D, Ziaikin E, Madzhidov T, Varnek A (2021) 
HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder. 
ChemRxiv. doi: 10.26434/chemrxiv-2021-18x0d

Data

All materials used in the publication are availible on Figshare project page

Data sets

The standardized data sets and training/validation splits:

  1. ZINC 250K standardized data set
  2. ChEMBL v.27 standardized data set
  3. The MOSES data set was used as it is

The original data sets were taken from:

  1. Original ZINC 250K data set
  2. ChEMBL page
  3. MOSES benchmarking GitHub repository

Models weights

The weights of Autoencoders from the experiments are available on Figshare

Installation

Installation with conda (preffered)

First, download the repository on your machine. Then, create conda enviroment with the folowing code:

conda env create -f enviroment.yml

When your enviroment is ready, activate it and execute command to install the architecture:

python3 setup.py install

Installation with pip

In this case you should create enviroment folder anywhere you prefer, install here the enviroment and activate it:

mkdir hyfactor_env
python3 -m venv hyfactor_env/
source hyfactor_env/bin/activate

Then, similarly as with conda, you just run the folowing code:

python3 setup.py install

Usage

Before start

This tool works in two modes: command-line and as usual python package. In both ways you should specify config file which will be used for every task. The examples of config file you can find in the folder examples/configs.

Command-line interface

Once you specified your config file, execute the AutoEncoder with folowing command:

hyfactor -cfg YOUR_CONFIG_FILE.yaml

Python interface

Here you can simply import the HYFactor package in folowing way:

from HYFactor import task_preparer
import yaml

with open('YOUR_CONFIG_FILE.yaml', 'r') as file:
    config = yaml.load(file, Loader=yaml.SafeLoader)

run_ae(config)

Contributing

We welcome contributions, in the form of issues or pull requests.

If you have a question or want to report a bug, please submit an issue.

To contribute with code to the project, follow these steps:

  1. Fork this repository.
  2. Create a branch: git checkout -b <branch_name>.
  3. Make your changes and commit them: git commit -m '<commit_message>'
  4. Push to the remote branch: git push
  5. Create the pull request.

Copyright

Owner
Laboratoire-de-Chemoinformatique
Chemoinformatics Laboratory
Laboratoire-de-Chemoinformatique
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022