[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

Overview

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021)

Introduction

This is an official pytorch implementation of An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation. [ICCV 2021] PDF

Abstract

Most semi-supervised learning models are consistency-based, which leverage unlabeled images by maximizing the similarity between different augmentations of an image. But when we apply them to human pose estimation that has extremely imbalanced class distribution, they often collapse and predict every pixel in unlabeled images as background. We find this is because the decision boundary passes the high-density areas of the minor class so more and more pixels are gradually mis-classified as background.

In this work, we present a surprisingly simple approach to drive the model. For each image, it composes a pair of easy-hard augmentations and uses the more accurate predictions on the easy image to teach the network to learn pose information of the hard one. The accuracy superiority of teaching signals allows the network to be “monotonically” improved which effectively avoids collapsing. We apply our method to the state-of-the-art pose estimators and it further improves their performance on three public datasets.

Main Results

1. Semi-Supervised Setting

Results on COCO Val2017

Method Augmentation 1K Labels 5K Labels 10K Labels
Supervised Affine 31.5 46.4 51.1
PoseCons (Single) Affine 38.5 50.5 55.4
PoseCons (Single) Affine + Joint Cutout 42.1 52.3 57.3
PoseDual (Dual) Affine 41.5 54.8 58.7
PoseDual (Dual) Affine + RandAug 43.7 55.4 59.3
PoseDual (Dual) Affine + Joint Cutout 44.6 55.6 59.6

We use COCO Subset (1K, 5K and 10K) and TRAIN as labeled and unlabeled datasets, respectively

Note:

  • The Ground Truth person boxes is used
  • No flipping test is used.

2. Full labels Setting

Results on COCO Val2017

Method Network AP AP.5 AR
Supervised ResNet50 70.9 91.4 74.2
PoseDual ResNet50 73.9 (↑3.0) 92.5 77.0
Supervised HRNetW48 77.2 93.5 79.9
PoseDual HRNetW48 79.2 (↑2.0) 94.6 81.7

We use COCO TRAIN and WILD as labeled and unlabeled datasets, respectively

Pretrained Models

Download Links Google Drive

Environment

The code is developed using python 3.7 on Ubuntu 16.04. NVIDIA GPUs are needed.

Quick start

Installation

  1. Install pytorch >= v1.2.0 following official instruction.

  2. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Make libs:

    cd ${POSE_ROOT}/lib
    make
    
  5. Init output(training model output directory)::

     mkdir output 
     mkdir log
    
  6. Download pytorch imagenet pretrained models from Google Drive. The PoseDual (ResNet18) should load resnet18_5c_gluon_posedual as pretrained for training,

  7. Download our pretrained models from Google Drive

    ${POSE_ROOT}
     `-- models
         `-- pytorch
             |-- imagenet
             |   |-- resnet18_5c_f3_posedual.pth
             |   |-- resnet18-5c106cde.pth
             |   |-- resnet50-19c8e357.pth
             |   |-- resnet101-5d3b4d8f.pth
             |   |-- resnet152-b121ed2d.pth
             |   |-- ......
             |-- pose_dual
                 |-- COCO_subset
                 |   |-- COCO1K_PoseDual.pth.tar
                 |   |-- COCO5K_PoseDual.pth.tar
                 |   |-- COCO10K_PoseDual.pth.tar
                 |   |-- ......
                 |-- COCO_COCOwild
                 |-- ......
    

Data preparation

For COCO and MPII dataset, Please refer to Simple Baseline to prepare them.
Download Person Detection Boxes and Images for COCO WILD (unlabeled) set. The structure looks like this:

${POSE_ROOT}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   |-- person_keypoints_val2017.json
        |   `__ image_info_unlabeled2017.json
        |-- person_detection_results
        |   |-- COCO_val2017_detections_AP_H_56_person.json
        |   |-- COCO_test-dev2017_detections_AP_H_609_person.json
        |   `-- COCO_unlabeled2017_detections_person_faster_rcnn.json
        `-- images
            |-- train2017
            |   |-- 000000000009.jpg
            |   |-- 000000000025.jpg
            |   |-- ... 
            `-- val2017
                |-- 000000000139.jpg
                |-- 000000000285.jpg
                |-- ... 

For AIC data, please download from AI Challenger 2017, 2017 Train/Val is needed for keypoints training and validation. Please download the annotation files from AIC Annotations. The structure looks like this:

${POSE_ROOT}
|-- data
`-- |-- ai_challenger
    `-- |-- train
        |   |-- images
        |   `-- keypoint_train_annotation.json
        `-- validation
            |-- images
            |   |-- 0a00c0b5493774b3de2cf439c84702dd839af9a2.jpg
            |   |-- 0a0c466577b9d87e0a0ed84fc8f95ccc1197f4b0.jpg
            |   `-- ...
            |-- gt_valid.mat
            `-- keypoint_validation_annotation.json

Run

Training

1. Training Dual Networks (PoseDual) on COCO 1K labels

python pose_estimation/train.py \
    --cfg experiments/mix_coco_coco/res18/256x192_COCO1K_PoseDual.yaml

2. Training Dual Networks on COCO 1K labels with Joint Cutout

python pose_estimation/train.py \
    --cfg experiments/mix_coco_coco/res18/256x192_COCO1K_PoseDual_JointCutout.yaml

3.Training Dual Networks on COCO 1K labels with Distributed Data Parallel

python -m torch.distributed.launch --nproc_per_node=4  pose_estimation/train.py \
    --distributed --cfg experiments/mix_coco_coco/res18/256x192_COCO1K_PoseDual.yaml

4. Training Single Networks (PoseCons) on COCO 1K labels

python pose_estimation/train.py \
    --cfg experiments/mix_coco_coco/res18/256x192_COCO1K_PoseCons.yaml

5. Training Dual Networks (PoseDual) with ResNet50 on COCO TRAIN + WILD

python pose_estimation/train.py \
    --cfg experiments/mix_coco_coco/res50/256x192_COCO_COCOunlabel_PoseDual_JointCut.yaml

Testing

6. Testing Dual Networks (PoseDual+COCO1K) on COCO VAL

python pose_estimation/valid.py \
    --cfg experiments/mix_coco_coco/res18/256x192_COCO1K_PoseDual.yaml

Citation

If you use our code or models in your research, please cite with:

@inproceedings{semipose,
  title={An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation},
  author={Xie, Rongchang and Wang, Chunyu and Zeng, Wenjun and Wang, Yizhou},
  booktitle={ICCV},
  year={2021}
}

Acknowledgement

The code is mainly based on Simple Baseline and HRNet. Some code comes from DarkPose. Thanks for their works.

Owner
rongchangxie
Graduate student of Peking university
rongchangxie
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022