Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Overview

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation

License: MIT PWC

This repository is the pytorch implementation of our paper:

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation
Muhammad Zubair Irshad, Chih-Yao Ma, Zsolt Kira
International Conference on Robotics and Automation (ICRA), 2021

[Project Page] [arXiv] [GitHub]

Installation

Clone the current repository and required submodules:

git clone https://github.com/GT-RIPL/robo-vln
cd robo-vln
  
export robovln_rootdir=$PWD
    
git submodule init 
git submodule update

Habitat and Other Dependencies

Install robo-vln dependencies as follows:

conda create -n habitat python=3.6 cmake=3.14.0
cd $robovln_rootdir
python -m pip install -r requirements.txt

We use modified versions of Habitat-Sim and Habitat-API to support continuous control/action-spaces in Habitat Simulator. The details regarding continuous action spaces and converting discrete VLN dataset into continuous control formulation can be found in our paper. The specific commits of our modified Habitat-Sim and Habitat-API versions are mentioned below.

# installs both habitat-api and habitat_baselines
cd $robovln_rootdir/environments/habitat-lab
python -m pip install -r requirements.txt
python -m pip install -r habitat_baselines/rl/requirements.txt
python -m pip install -r habitat_baselines/rl/ddppo/requirements.txt
python setup.py develop --all
	
# Install habitat-sim
cd $robovln_rootdir/environments/habitat-sim
python setup.py install --headless --with-cuda

Data

Similar to Habitat-API, we expect a data folder (or symlink) with a particular structure in the top-level directory of this project.

Matterport3D

We utilize Matterport3D (MP3D) photo-realistic scene reconstructions to train and evaluate our agent. A total of 90 Matterport3D scenes are used for robo-vln. Here is the official Matterport3D Dataset download link and associated instructions: project webpage. To download the scenes needed for robo-vln, run the following commands:

# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/

Extract this data to data/scene_datasets/mp3d such that it has the form data/scene_datasets/mp3d/{scene}/{scene}.glb.

Dataset

The Robo-VLN dataset is a continuous control formualtion of the VLN-CE dataset by Krantz et al ported over from Room-to-Room (R2R) dataset created by Anderson et al. The details regarding converting discrete VLN dataset into continuous control formulation can be found in our paper.

Dataset Path to extract Size
robo_vln_v1.zip data/datasets/robo_vln_v1 76.9 MB

Robo-VLN Dataset

The dataset robo_vln_v1 contains the train, val_seen, and val_unseen splits.

  • train: 7739 episodes
  • val_seen: 570 episodes
  • val_unseen: 1224 episodes

Format of {split}.json.gz

{
    'episodes' = [
        {
            'episode_id': 4991,
            'trajectory_id': 3279,
            'scene_id': 'mp3d/JeFG25nYj2p/JeFG25nYj2p.glb',
            'instruction': {
                'instruction_text': 'Walk past the striped area rug...',
                'instruction_tokens': [2384, 1589, 2202, 2118, 133, 1856, 9]
            },
            'start_position': [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            'start_rotation': [0, 0.3332950713608026, 0, 0.9428225683587541],
            'goals': [
                {
                    'position': [3.360340118408203, 0.09358400106430054, 3.07817006111145], 
                    'radius': 3.0
                }
            ],
            'reference_path': [
                [10.257800102233887, 0.09358400106430054, -2.379739999771118], 
                [9.434900283813477, 0.09358400106430054, -1.3061100244522095]
                ...
                [3.360340118408203, 0.09358400106430054, 3.07817006111145],
            ],
            'info': {'geodesic_distance': 9.65537166595459},
        },
        ...
    ],
    'instruction_vocab': [
        'word_list': [..., 'orchids', 'order', 'orient', ...],
        'word2idx_dict': {
            ...,
            'orchids': 1505,
            'order': 1506,
            'orient': 1507,
            ...
        },
        'itos': [..., 'orchids', 'order', 'orient', ...],
        'stoi': {
            ...,
            'orchids': 1505,
            'order': 1506,
            'orient': 1507,
            ...
        },
        'num_vocab': 2504,
        'UNK_INDEX': 1,
        'PAD_INDEX': 0,
    ]
}
  • Format of {split}_gt.json.gz
{
    '4991': {
        'actions': [
          ...
          [-0.999969482421875, 1.0],
          [-0.9999847412109375, 0.15731772780418396],
          ...
          ],
        'forward_steps': 325,
        'locations': [
            [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            ...
            [-12.644463539123535, 0.1518409252166748, 4.2241311073303220]
        ]
    }
    ...
}

Depth Encoder Weights

Similar to VLN-CE, our learning-based models utilizes a depth encoder pretained on a large-scale point-goal navigation task i.e. DDPPO. We utilize depth pretraining by using the DDPPO features from the ResNet50 from the original paper. The pretrained network can be downloaded here. Extract the contents of ddppo-models.zip to data/ddppo-models/{model}.pth.

Training and reproducing results

We use run.py script to train and evaluate all of our baseline models. Use run.py along with a configuration file and a run type (either train or eval) to train or evaluate:

python run.py --exp-config path/to/config.yaml --run-type {train | eval}

For lists of modifiable configuration options, see the default task config and experiment config files.

Evaluating Models

All models can be evaluated using python run.py --exp-config path/to/config.yaml --run-type eval. The relevant config entries for evaluation are:

EVAL_CKPT_PATH_DIR  # path to a checkpoint or a directory of checkpoints
EVAL.USE_CKPT_CONFIG  # if True, use the config saved in the checkpoint file
EVAL.SPLIT  # which dataset split to evaluate on (typically val_seen or val_unseen)
EVAL.EPISODE_COUNT  # how many episodes to evaluate

If EVAL.EPISODE_COUNT is equal to or greater than the number of episodes in the evaluation dataset, all episodes will be evaluated. If EVAL_CKPT_PATH_DIR is a directory, one checkpoint will be evaluated at a time. If there are no more checkpoints to evaluate, the script will poll the directory every few seconds looking for a new one. Each config file listed in the next section is capable of both training and evaluating the model it is accompanied by.

Off-line Data Buffer

All our models require an off-line data buffer for training. To collect the continuous control dataset for both train and val_seen splits, run the following commands before training (Please note that it would take some time on a single GPU to store data. Please also make sure to dedicate around ~1.5 TB of hard-disk space for data collection):

Collect data buffer for train split:

python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_train.yaml --run-type train

Collect data buffer for val_seen split:

python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_val.yaml --run-type train 

CUDA

We use 2 GPUs to train our Hierarchical Model hierarchical_cma.yaml. To train the hierarchical model, dedicate 2 GPUs for training as follows:

CUDA_VISIBLE_DEVICES=0,1 python run.py --exp-config robo_vln_baselines/config/paper_configs/hierarchical_cma.yaml --run-type train

Models/Results From the Paper

Model val_seen SPL val_unseen SPL Config
Seq2Seq 0.34 0.30 seq2seq_robo.yaml
PM 0.27 0.24 seq2seq_robo_pm.yaml
CMA 0.25 0.25 cma.yaml
HCM (Ours) 0.43 0.40 hierarchical_cma.yaml
Legend
Seq2Seq Sequence-to-Sequence. Please see our paper on modification made to the model to match the continuous action spaces in robo-vln
PM Progress monitor
CMA Cross-Modal Attention model. Please see our paper on modification made to the model to match the continuous action spaces in robo-vln
HCM Hierarchical Cross-Modal Agent Module (The proposed hierarchical VLN model from our paper).

Pretrained Model

We provide pretrained model for our best Hierarchical Cross-Modal Agent (HCM). Pre-trained Model can be downloaded as follows:

Pre-trained Model Size
HCM_Agent.pth 691 MB

Citation

If you find this repository useful, please cite our paper:

@inproceedings{irshad2021hierarchical,
title={Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation},
author={Muhammad Zubair Irshad and Chih-Yao Ma and Zsolt Kira},
booktitle={Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
year={2021},
url={https://arxiv.org/abs/2104.10674}
}

Acknowledgments

  • This code is built upon the implementation from VLN-CE
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Franck Dernoncourt 1.6k Dec 27, 2022
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

EleutherAI 42 Dec 13, 2022
An end to end ASR Transformer model training repo

END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │

旷视天元 MegEngine 10 Jul 19, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
2021海华AI挑战赛·中文阅读理解·技术组·第三名

文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。

21 Dec 26, 2022
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 227 Jan 02, 2023
jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.

jel: Japanese Entity Linker jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. Usage Currently, link and question methods

izuna385 10 Jan 06, 2023
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022