Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers and helping them make a wise buying decision.

Overview

Product Reviews Summarizer

Version 1.0.0

A quick guide on installation of important libraries and running the code.

The project has three .ipynb files - Data Scraper.ipynb, cosine-similarity-wo-tf-idf.ipynb, and cosine-similarity-w-tf-idf.ipynb.


Data Scraper

For the Data Scraper python script, we need to import the following three libraries - requests, BeautifulSoup, and pandas. The installation process can be viewed by clicking on the respective library names.

Splash

In this project, instead of using the default web browser to scrape data, we have created a splash container using docker. Splash is a light-weight javascript rendering service with an HTTP API. For easy installation, you can watch this amazing video by John Watson Rooney on YouTube.

https://www.youtube.com/watch?v=8q2K41QC2nQ&t=361s

Note: You need to make sure that you give the Splash Localhost URL to the requests.get().

Running the code

After you have installed and configured everything, you can run the code by providing the URL of your choice. Suppose, you are taking a product from Amazon, make sure to go to All Reviews page and go to page #2. Copy this URL upto the last '=' and paste it as an f-string in the code. Add a '{x}' after the '='. The code is ready to run. It will scrape the product name, review title, star rating, and the review body from each page, until the last page is encountered, and save it in .xlsx format.

Note: Specify the required output name and destination.


cosine-similarity-wo-tf-idf

For the cosine similarity model, first we need to download the pretrained GloVe Word Embeddings. Run the Load GloVe Word Embeddings section in the script once. It is only required if the kernel is restarted.

For this script, we need to import the following libraries - numpy, pandas, nltk, nltk.tokenize, nltk.corpus, re, sklearn.metrics.pairwise, networkx, transformers, and time. Also run the nltk.download('punkt') and nltk.download('stopwords') lines to download them.

Next step is to load the data as a dataframe. Make sure to give the correct address. Pre-processing of the reviews is done for efficient results. The pre-processing steps include converting to string datatype, converting alphabetical characters to lowercase, removing stopwords, replacing non-alphabetical characters with blank character and tokenizing the sentences.

The pre-processed data is then grouped based on star ratings and sent to the cosine similarity and pagerank algorithm. The top 10 ranked sentences after the applying the pagerank algorithm are sent to huggingface transformers to create an extractive summary (min_lenght = 75, max_length = 300). The summary, along with the product name, star rating, no of reviews, % of total reviews, and the top 5 frequent words along with the count are saved in .xlsx format.

Note: Specify the required output name and destination.


cosine-similarity-w-tf-idf

For this model, along with the above libraries, we need to import the following additional libraries - spacy, and heapq. The cosine similarity algorithm has a time complexity of O(n^2). In order to have a fast execution, in this method, we are using tf-idf measure to score the frequent words, and hence the corresponding sentences. Only the top 1000 sentences are then sent to the cosine similarity algorithm. Usage of the tf-idf measure, ensures that each product, irrespective of the number of sentences in the reviews, gives an output within 120 seconds. This method makes sure no important feature is lost, giving similar results as the previous method but in considerately less time.


Contributors

© Parv Bhatt © Namratha Sri Mateti © Dominic Thomas


Owner
Parv Bhatt
Masters in Data Analytics Student at Penn State University
Parv Bhatt
Making text a first-class citizen in TensorFlow.

TensorFlow Text - Text processing in Tensorflow IMPORTANT: When installing TF Text with pip install, please note the version of TensorFlow you are run

1k Dec 26, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
Programme de chiffrement et de déchiffrement inverse d'un message en python3.

Chiffrement Inverse En Python3 Programme de chiffrement et de déchiffrement inverse d'un message en python3. Explication du chiffrement inverse avec c

Malik Makkes 2 Mar 26, 2022
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
FactSumm: Factual Consistency Scorer for Abstractive Summarization

FactSumm: Factual Consistency Scorer for Abstractive Summarization FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization W

devfon 83 Jan 09, 2023
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository

We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenizatio

Computation for Indian Language Technology (CFILT) 9 Oct 13, 2022
Natural Language Processing

NLP Natural Language Processing apps Multilingual_NLP.py start #This script is demonstartion of Mul

Ritesh Sharma 1 Oct 31, 2021
Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Lau 1 Dec 17, 2021
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022