VideoGPT: Video Generation using VQ-VAE and Transformers

Related tags

Deep LearningVideoGPT
Overview

VideoGPT: Video Generation using VQ-VAE and Transformers

[Paper][Website][Colab][Gradio Demo]

We present VideoGPT: a conceptually simple architecture for scaling likelihood based generative modeling to natural videos. VideoGPT uses VQ-VAE that learns downsampled discrete latent representations of a raw video by employing 3D convolutions and axial self-attention. A simple GPT-like architecture is then used to autoregressively model the discrete latents using spatio-temporal position encodings. Despite the simplicity in formulation and ease of training, our architecture is able to generate samples competitive with state-of-the-art GAN models for video generation on the BAIR Robot dataset, and generate high fidelity natural images from UCF-101 and Tumbler GIF Dataset (TGIF). We hope our proposed architecture serves as a reproducible reference for a minimalistic implementation of transformer based video generation models.

Approach

VideoGPT

Installation

Change the cudatoolkit version compatible to your machine.

$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
$ pip install git+https://github.com/wilson1yan/VideoGPT.git

Sparse Attention (Optional)

For limited compute scenarios, it may be beneficial to use sparse attention.

$ sudo apt-get install llvm-9-dev
$ DS_BUILD_SPARSE_ATTN=1 pip install deepspeed

After installng deepspeed, you can train a sparse transformer by setting the flag --attn_type sparse in scripts/train_videogpt.py. The default support sparsity configuration is an N-d strided sparsity layout, however, you can write your own arbitrary layouts to use.

Dataset

The default code accepts data as an HDF5 file with the specified format in videogpt/data.py, and a directory format with the follow structure:

video_dataset/
    train/
        class_0/
            video1.mp4
            video2.mp4
            ...
        class_1/
            video1.mp4
            ...
        ...
        class_n/
            ...
    test/
        class_0/
            video1.mp4
            video2.mp4
            ...
        class_1/
            video1.mp4
            ...
        ...
        class_n/
            ...

An example of such a dataset can be constructed from UCF-101 data by running the script

sh scripts/preprocess/create_ucf_dataset.sh datasets/ucf101

You may need to install unrar and unzip for the code to work correctly.

If you do not care about classes, the class folders are not necessary and the dataset file structure can be collapsed into train and test directories of just videos.

Using Pretrained VQ-VAEs

There are four available pre-trained VQ-VAE models. All strides listed with each model are downsampling amounts across THW for the encoders.

  • bair_stride4x2x2: trained on 16 frame 64 x 64 videos from the BAIR Robot Pushing dataset
  • ucf101_stride4x4x4: trained on 16 frame 128 x 128 videos from UCF-101
  • kinetics_stride4x4x4: trained on 16 frame 128 x 128 videos from Kinetics-600
  • kinetics_stride2x4x4: trained on 16 frame 128 x 128 videos from Kinetics-600, with 2x larger temporal latent codes (achieves slightly better reconstruction)
from torchvision.io import read_video
from videogpt import load_vqvae
from videogpt.data import preprocess

video_filename = 'path/to/video_file.mp4'
sequence_length = 16
resolution = 128
device = torch.device('cuda')

vqvae = load_vqvae('kinetics_stride2x4x4')
video = read_video(video_filename, pts_unit='sec')[0]
video = preprocess(video, resolution, sequence_length).unsqueeze(0).to(device)

encodings = vqvae.encode(video)
video_recon = vqvae.decode(encodings)

Training VQ-VAE

Use the scripts/train_vqvae.py script to train a VQ-VAE. Execute python scripts/train_vqvae.py -h for information on all available training settings. A subset of more relevant settings are listed below, along with default values.

VQ-VAE Specific Settings

  • --embedding_dim: number of dimensions for codebooks embeddings
  • --n_codes 2048: number of codes in the codebook
  • --n_hiddens 240: number of hidden features in the residual blocks
  • --n_res_layers 4: number of residual blocks
  • --downsample 4 4 4: T H W downsampling stride of the encoder

Training Settings

  • --gpus 2: number of gpus for distributed training
  • --sync_batchnorm: uses SyncBatchNorm instead of BatchNorm3d when using > 1 gpu
  • --gradient_clip_val 1: gradient clipping threshold for training
  • --batch_size 16: batch size per gpu
  • --num_workers 8: number of workers for each DataLoader

Dataset Settings

  • --data_path : path to an hdf5 file or a folder containing train and test folders with subdirectories of videos
  • --resolution 128: spatial resolution to train on
  • --sequence_length 16: temporal resolution, or video clip length

Training VideoGPT

You can download a pretrained VQ-VAE, or train your own. Afterwards, use the scripts/train_videogpt.py script to train an VideoGPT model for sampling. Execute python scripts/train_videogpt.py -h for information on all available training settings. A subset of more relevant settings are listed below, along with default values.

VideoGPT Specific Settings

  • --vqvae kinetics_stride4x4x4: path to a vqvae checkpoint file, OR a pretrained model name to download. Available pretrained models are: bair_stride4x2x2, ucf101_stride4x4x4, kinetics_stride4x4x4, kinetics_stride2x4x4. BAIR was trained on 64 x 64 videos, and the rest on 128 x 128 videos
  • --n_cond_frames 0: number of frames to condition on. 0 represents a non-frame conditioned model
  • --class_cond: trains a class conditional model if activated
  • --hidden_dim 576: number of transformer hidden features
  • --heads 4: number of heads for multihead attention
  • --layers 8: number of transformer layers
  • --dropout 0.2': dropout probability applied to features after attention and positionwise feedforward layers
  • --attn_type full: full or sparse attention. Refer to the Installation section for install sparse attention
  • --attn_dropout 0.3: dropout probability applied to the attention weight matrix

Training Settings

  • --gpus 2: number of gpus for distributed training
  • --sync_batchnorm: uses SyncBatchNorm instead of BatchNorm3d when using > 1 gpu
  • --gradient_clip_val 1: gradient clipping threshold for training
  • --batch_size 16: batch size per gpu
  • --num_workers 8: number of workers for each DataLoader

Dataset Settings

  • --data_path : path to an hdf5 file or a folder containing train and test folders with subdirectories of videos
  • --resolution 128: spatial resolution to train on
  • --sequence_length 16: temporal resolution, or video clip length

Sampling VideoGPT

After training, the VideoGPT model can be sampled using the scripts/sample_videogpt.py. You may need to install ffmpeg: sudo apt-get install ffmpeg

Reproducing Paper Results

Note that this repo is primarily designed for simplicity and extending off of our method. Reproducing the full paper results can be done using code found at a separate repo. However, be aware that the code is not as clean.

Citation

Please consider using the follow citation when using our code:

@misc{yan2021videogpt,
      title={VideoGPT: Video Generation using VQ-VAE and Transformers}, 
      author={Wilson Yan and Yunzhi Zhang and Pieter Abbeel and Aravind Srinivas},
      year={2021},
      eprint={2104.10157},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Wilson Yan
1st year PhD interested in unsupervised learning and reinforcement learning
Wilson Yan
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022