PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Overview

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis

This is a PyTorch implementation of the Deep Streaming Linear Discriminant Analysis (SLDA) algorithm from our CVPRW-2020 paper. An arXiv pre-print of our paper is available, as well as the published paper.

Deep SLDA combines a feature extractor with LDA to perform streaming image classification and can be thought of as a way to train the output layer of a neural network. Deep SLDA only requires the storage of a single shared covariance matrix beyond its feature extraction CNN, making its memory requirements very low, e.g., 0.001 GB for our experiments with ResNet-18. Further, once initialized, Deep SLDA is able to train incrementally on the ImageNet dataset in roughly 30 minutes on a Titan X GPU. This is remarkable as methods like iCaRL require 3.011 GB of storage beyond the CNN and require 62 hours to train on the same hardware.

An additional Deep SLDA implementation directly using the CORe50 dataset and scenarios defined in the original CORe50 paper is located here

Dependences

  • Tested with Python 3.6 and PyTorch 1.1.0, or Python 3.7 and PyTorch 1.3.1, NumPy, NVIDIA GPU
  • Dataset:
    • ImageNet-1K (ILSVRC2012) -- Download the ImageNet-1K dataset and move validation images to labeled sub-folders. See link.

Usage

To replicate the SLDA experiments on ImageNet-1K, change necessary paths and run from terminal:

  • slda_imagenet.sh

Alternatively, setup appropriate parameters and run directly in python:

  • python experiment.py

Implementation Notes

When run, the script will save out network probabilities (torch files), accuracies (json files), and the SLDA means and covariance weights (torch files) after every 100 classes in a directory called ./streaming_experiments/*expt_name*.

We have included all necessary files to replicate our ImageNet-1K experiments. Note that the checkpoint file provided in image_files has only been trained on the base 100 classes. However, for other datasets you may want a checkpoint trained on the entire ImageNet-1K dataset, e.g., our CORe50 experiments. Simply change line 196 of experiment.py to feature_extraction_model = get_feature_extraction_model(None, imagenet_pretrained=True).eval() to use ImageNet-1K pre-trained weights from PyTorch.

Other datasets can be used by implementing a PyTorch dataloader for them.

If you would like to start streaming from scratch without a base initialization phase, simply leave out the call to fit_base.

Results on ImageNet ILSVRC-2012

Deep_SLDA

Citation

If using this code, please cite our paper.

@InProceedings{Hayes_2020_CVPR_Workshops,
    author = {Hayes, Tyler L. and Kanan, Christopher},
    title = {Lifelong Machine Learning With Deep Streaming Linear Discriminant Analysis},
    booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month = {June},
    year = {2020}
}
Owner
Tyler Hayes
I am a PhD candidate at the Rochester Institute of Technology (RIT). My current research is on lifelong machine learning.
Tyler Hayes
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022