PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Overview

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis

This is a PyTorch implementation of the Deep Streaming Linear Discriminant Analysis (SLDA) algorithm from our CVPRW-2020 paper. An arXiv pre-print of our paper is available, as well as the published paper.

Deep SLDA combines a feature extractor with LDA to perform streaming image classification and can be thought of as a way to train the output layer of a neural network. Deep SLDA only requires the storage of a single shared covariance matrix beyond its feature extraction CNN, making its memory requirements very low, e.g., 0.001 GB for our experiments with ResNet-18. Further, once initialized, Deep SLDA is able to train incrementally on the ImageNet dataset in roughly 30 minutes on a Titan X GPU. This is remarkable as methods like iCaRL require 3.011 GB of storage beyond the CNN and require 62 hours to train on the same hardware.

An additional Deep SLDA implementation directly using the CORe50 dataset and scenarios defined in the original CORe50 paper is located here

Dependences

  • Tested with Python 3.6 and PyTorch 1.1.0, or Python 3.7 and PyTorch 1.3.1, NumPy, NVIDIA GPU
  • Dataset:
    • ImageNet-1K (ILSVRC2012) -- Download the ImageNet-1K dataset and move validation images to labeled sub-folders. See link.

Usage

To replicate the SLDA experiments on ImageNet-1K, change necessary paths and run from terminal:

  • slda_imagenet.sh

Alternatively, setup appropriate parameters and run directly in python:

  • python experiment.py

Implementation Notes

When run, the script will save out network probabilities (torch files), accuracies (json files), and the SLDA means and covariance weights (torch files) after every 100 classes in a directory called ./streaming_experiments/*expt_name*.

We have included all necessary files to replicate our ImageNet-1K experiments. Note that the checkpoint file provided in image_files has only been trained on the base 100 classes. However, for other datasets you may want a checkpoint trained on the entire ImageNet-1K dataset, e.g., our CORe50 experiments. Simply change line 196 of experiment.py to feature_extraction_model = get_feature_extraction_model(None, imagenet_pretrained=True).eval() to use ImageNet-1K pre-trained weights from PyTorch.

Other datasets can be used by implementing a PyTorch dataloader for them.

If you would like to start streaming from scratch without a base initialization phase, simply leave out the call to fit_base.

Results on ImageNet ILSVRC-2012

Deep_SLDA

Citation

If using this code, please cite our paper.

@InProceedings{Hayes_2020_CVPR_Workshops,
    author = {Hayes, Tyler L. and Kanan, Christopher},
    title = {Lifelong Machine Learning With Deep Streaming Linear Discriminant Analysis},
    booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month = {June},
    year = {2020}
}
Owner
Tyler Hayes
I am a PhD candidate at the Rochester Institute of Technology (RIT). My current research is on lifelong machine learning.
Tyler Hayes
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022