PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Overview

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis

This is a PyTorch implementation of the Deep Streaming Linear Discriminant Analysis (SLDA) algorithm from our CVPRW-2020 paper. An arXiv pre-print of our paper is available, as well as the published paper.

Deep SLDA combines a feature extractor with LDA to perform streaming image classification and can be thought of as a way to train the output layer of a neural network. Deep SLDA only requires the storage of a single shared covariance matrix beyond its feature extraction CNN, making its memory requirements very low, e.g., 0.001 GB for our experiments with ResNet-18. Further, once initialized, Deep SLDA is able to train incrementally on the ImageNet dataset in roughly 30 minutes on a Titan X GPU. This is remarkable as methods like iCaRL require 3.011 GB of storage beyond the CNN and require 62 hours to train on the same hardware.

An additional Deep SLDA implementation directly using the CORe50 dataset and scenarios defined in the original CORe50 paper is located here

Dependences

  • Tested with Python 3.6 and PyTorch 1.1.0, or Python 3.7 and PyTorch 1.3.1, NumPy, NVIDIA GPU
  • Dataset:
    • ImageNet-1K (ILSVRC2012) -- Download the ImageNet-1K dataset and move validation images to labeled sub-folders. See link.

Usage

To replicate the SLDA experiments on ImageNet-1K, change necessary paths and run from terminal:

  • slda_imagenet.sh

Alternatively, setup appropriate parameters and run directly in python:

  • python experiment.py

Implementation Notes

When run, the script will save out network probabilities (torch files), accuracies (json files), and the SLDA means and covariance weights (torch files) after every 100 classes in a directory called ./streaming_experiments/*expt_name*.

We have included all necessary files to replicate our ImageNet-1K experiments. Note that the checkpoint file provided in image_files has only been trained on the base 100 classes. However, for other datasets you may want a checkpoint trained on the entire ImageNet-1K dataset, e.g., our CORe50 experiments. Simply change line 196 of experiment.py to feature_extraction_model = get_feature_extraction_model(None, imagenet_pretrained=True).eval() to use ImageNet-1K pre-trained weights from PyTorch.

Other datasets can be used by implementing a PyTorch dataloader for them.

If you would like to start streaming from scratch without a base initialization phase, simply leave out the call to fit_base.

Results on ImageNet ILSVRC-2012

Deep_SLDA

Citation

If using this code, please cite our paper.

@InProceedings{Hayes_2020_CVPR_Workshops,
    author = {Hayes, Tyler L. and Kanan, Christopher},
    title = {Lifelong Machine Learning With Deep Streaming Linear Discriminant Analysis},
    booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month = {June},
    year = {2020}
}
Owner
Tyler Hayes
I am a PhD candidate at the Rochester Institute of Technology (RIT). My current research is on lifelong machine learning.
Tyler Hayes
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

RandWireNN Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition. Results Validation result on Imagenet

Seung-won Park 684 Nov 02, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Salesforce 72 Dec 05, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022