Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

Overview

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper]

This is Official PyTorch implementation for HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning.

@inproceedings{lee2021help,
    title     = {HELP: Hardware-Adaptive Efficient Latency Prediction for NAS via Meta-Learning},
    author    = {Lee, Hayeon and Lee, Sewoong and Chong, Song and Hwang, Sung Ju},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
    year      = {2021}
} 

Overview

For deployment, neural architecture search should be hardware-aware, in order to satisfy the device-specific constraints (e.g., memory usage, latency and energy consumption) and enhance the model efficiency. Existing methods on hardware-aware NAS collect a large number of samples (e.g., accuracy and latency) from a target device, either builds a lookup table or a latency estimator. However, such approach is impractical in real-world scenarios as there exist numerous devices with different hardware specifications, and collecting samples from such a large number of devices will require prohibitive computational and monetary cost. To overcome such limitations, we propose Hardware-adaptive Efficient Latency Predictor (HELP), which formulates the device-specific latency estimation problem as a meta-learning problem, such that we can estimate the latency of a model's performance for a given task on an unseen device with a few samples. To this end, we introduce novel hardware embeddings to embed any devices considering them as black-box functions that output latencies, and meta-learn the hardware-adaptive latency predictor in a device-dependent manner, using the hardware embeddings. We validate the proposed HELP for its latency estimation performance on unseen platforms, on which it achieves high estimation performance with as few as 10 measurement samples, outperforming all relevant baselines. We also validate end-to-end NAS frameworks using HELP against ones without it, and show that it largely reduces the total time cost of the base NAS method, in latency-constrained settings.

Prerequisites

  • Python 3.8 (Anaconda)
  • PyTorch 1.8.1
  • CUDA 10.2

Hardware spec used for meta-training the proposed HELP model

  • GPU: A single Nvidia GeForce RTX 2080Ti
  • CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz

Installation

$ conda create --name help python=3.8
$ conda activate help
$ conda install pytorch==1.8.1 torchvision cudatoolkit=10.2 -c pytorch
$ pip install nas-bench-201
$ pip install tqdm
$ conda install scipy
$ conda install pyyaml
$ conda install tensorboard

Contents

1. Experiments on NAS-Bench-201 Search Space

2. Experiments on FBNet Search Space

3. Experiments on OFA Search Space

4. Experiments on HAT Search Space

1. Reproduce Main Results on NAS-Bench-201 Search Space

We provide the code to reproduce the main results on NAS-Bench-201 search space as follows:

  • Computing architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices (Table 3).
  • Latency-constrained NAS Results with MetaD2A + HELP on unseen devices (Table 4).
  • Meta-Training HELP model.

1.1. Data Preparation and Model Checkpoint

We include all required datasets and checkpoints in this github repository.

1.2. [Meta-Test] Architecture ranking correlation

You can compute architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices on NAS-Bench-201 search space (Table 3):

$ python main.py --search_space nasbench201 \
		 --mode 'meta-test' \
		 --num_samples 10 \
		 --num_meta_train_sample 900 \
                 --load_path [Path of Checkpoint File] \
		 --meta_train_devices '1080ti_1,1080ti_32,1080ti_256,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
		 --meta_valid_devices 'titanx_1,titanx_32,titanx_256,gold_6240' \                 
                 --meta_test_devices 'titan_rtx_256,gold_6226,fpga,pixel2,raspi4,eyeriss' 

You can use checkpoint file provided by this git repository ./data/nasbench201/checkpoint/help_max_corr.pt as follows:

$ python main.py --search_space nasbench201 \
		 --mode 'meta-test' \
		 --num_samples 10 \
		 --num_meta_train_sample 900 \
                 --load_path './data/nasbench201/checkpoint/help_max_corr.pt' \
		 --meta_train_devices '1080ti_1,1080ti_32,1080ti_256,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
		 --meta_valid_devices 'titanx_1,titanx_32,titanx_256,gold_6240' \                 
                 --meta_test_devices 'titan_rtx_256,gold_6226,fpga,pixel2,raspi4,eyeriss' 

or you can use provided script:

$ bash script/run_meta_test_nasbench201.sh [GPU_NUM]

Architecture Ranking Correlation Results (Table 3)

Method # of Training Samples
From Target Device
Desktop GPU
(Titan RTX Batch 256)
Desktop CPU
(Intel Gold 6226)
Mobile
Pixel2
Raspi4 ASIC FPGA Mean
FLOPS - 0.950 0.826 0.765 0.846 0.437 0.900 0.787
Layer-wise Predictor - 0.667 0.866 - - - - 0.767
BRP-NAS 900 0.814 0.796 0.666 0.847 0.811 0.801 0.789
BRP-NAS
(+extra samples)
3200 0.822 0.805 0.693 0.853 0.830 0.828 0.805
HELP (Ours) 10 0.987 0.989 0.802 0.890 0.940 0.985 0.932

1.3. [Meta-Test] Efficient Latency-constrained NAS combined with MetaD2A

You can reproduce latency-constrained NAS results with MetaD2A + HELP on unseen devices on NAS-Bench-201 search space (Table 4):

$ python main.py --search_space nasbench201 --mode 'nas' \
                 --load_path [Path of Checkpoint File] \
                 --sampled_arch_path 'data/nasbench201/arch_generated_by_metad2a.txt' \
                 --nas_target_device [Device] \ 
                 --latency_constraint [Latency Constraint] 

For example, if you use checkpoint file provided by this git repository, then path of checkpoint file is ./data/nasbench201/checkpoint/help_max_corr.pt, if you set target device as CPU Intel Gold 6226 (gold_6226) with batch size 256 and target latency constraint as 11.0 (ms), command is as follows:

$ python main.py --search_space nasbench201 --mode 'nas' \
                 --load_path './data/nasbench201/checkpoint/help_max_corr.pt' \
                 --sampled_arch_path 'data/nasbench201/arch_generated_by_metad2a.txt' \
                 --nas_target_device gold_6226 \ 
                 --latency_constraint 11.0 

or you can use provided script:

$ bash script/run_nas_metad2a.sh [GPU_NUM]

Efficient Latency-constrained NAS Results (Table 4)

Device # of Training Samples
from Target Device
Latency
Constraint (ms)
Latency
(ms)
Accuracy
(%)
Neural Architecture
Config
GPU Titan RTX
(Batch 256)
titan_rtx_256
10 18.0
21.0
25.0
17.8
18.9
24.2
69.7
71.5
71.8
link
link
link
CPU Intel Gold 6226
gold_6226
10 8.0
11.0
14.0
8.0
10.7
14.3
67.3
70.2
72.1
link
link
link
Mobile Pixel2
pixel2
10 14.0
18.0
22.0
13.0
19.0
25.0
69.7
71.8
73.2
link
link
link
ASIC-Eyeriss
eyeriss
10 5.0
7.0
9.0
3.9
5.1
9.1
71.5
71.8
73.5
link
link
link
FPGA
fpga
10 4.0
5.0
6.0
3.8
4.7
7.4
70.2
71.8
73.5
link
link
link

1.4. Meta-Training HELP model

Note that this process is performed only once for all NAS results.

$ python main.py --search_space nasbench201 \
                 --mode 'meta-train' \
                 --num_samples 10 \
                 --num_meta_train_sample 900 \
                 --meta_train_devices '1080ti_1,1080ti_32,1080ti_256,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
                 --meta_valid_devices 'titanx_1,titanx_32,titanx_256,gold_6240' \           
                 --meta_test_devices 'titan_rtx_256,gold_6226,fpga,pixel2,raspi4,eyeriss' \
                 --exp_name [EXP_NAME] \
                 --seed 3 # e.g.) 1, 2, 3

or you can use provided script:

$ bash script/run_meta_training_nasbench201.sh [GPU_NUM]

The results (checkpoint file, log file etc) are saved in

./results/nasbench201/[EXP_NAME]

2. Reproduce Main Results on FBNet Search Space

We provide the code to reproduce the main results on FBNet search space as follows:

  • Computing architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices (Table 2).
  • Meta-Training HELP model.

2.1. Data Preparation and Model Checkpoint

We include all required datasets and checkpoints in this github repository.

2.2. [Meta-Test] Architecture ranking correlation

You can compute architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices on FBNet search space (Table 2):

$ python main.py --search_space fbnet \
	--mode 'meta-test' \
	--num_samples 10 \
	--num_episodes 4000 \
	--num_meta_train_sample 4000 \
	--load_path './data/fbnet/checkpoint/help_max_corr.pt' \
	--meta_train_devices '1080ti_1,1080ti_32,1080ti_64,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
	--meta_valid_devices 'titanx_1,titanx_32,titanx_64,gold_6240' \
	--meta_test_devices 'fpga,raspi4,eyeriss'

or you can use provided script:

$ bash script/run_meta_test_fbnet.sh [GPU_NUM]

Architecture Ranking Correlation Results (Table 2)

Method Raspi4 ASIC FPGA Mean
MAML 0.718 0.763 0.727 0.736
Meta-SGD 0.821 0.822 0.776 0.806
HELP (Ours) 0.887 0.943 0.892 0.910

2.3. Meta-Training HELP model

Note that this process is performed only once for all results.

$ python main.py --search_space fbnet \
	--mode 'meta-train' \
	--num_samples 10 \
	--num_episodes 4000 \
	--num_meta_train_sample 4000 \
	--exp_name [EXP_NAME] \
	--meta_train_devices '1080ti_1,1080ti_32,1080ti_64,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
	--meta_valid_devices 'titanx_1,titanx_32,titanx_64,gold_6240' \
	--meta_test_devices 'fpga,raspi4,eyeriss' \
	--seed 3 # e.g.) 1, 2, 3

or you can use provided script:

$ bash script/run_meta_training_fbnet.sh [GPU_NUM]

The results (checkpoint file, log file etc) are saved in

./results/fbnet/[EXP_NAME]

3. Reproduce Main Results on OFA Search Space

We provide the code to reproduce the main results on OFA search space as follows:

  • Latency-constrained NAS Results with accuracy predictor of OFA + HELP on unseen devices (Table 5).
  • Validating obatined neural architecture on ImageNet-1K.
  • Meta-Training HELP model.

3.1. Data Preparation and Model Checkpoint

We include required datasets except ImageNet-1K, and checkpoints in this github repository. To validate obatined neural architecture on ImageNet-1K, you should download ImageNet-1K (2012 ver.)

3.2. [Meta-Test] Efficient Latency-constrained NAS combined with accuracy predictor of OFA

You can reproduce latency-constrained NAS results with OFA + HELP on unseen devices on OFA search space (Table 5):

python main.py \
	--search_space ofa \
	--mode nas \
	--num_samples 10 \
	--seed 3 \
	--num_meta_train_sample 4000 \
	--load_path './data/ofa/checkpoint/help_max_corr.pt' \
	--nas_target_device [DEVICE_NAME] \
	--latency_constraint [LATENCY_CONSTRAINT] \
	--exp_name 'nas' \
	--meta_train_devices '2080ti_1,2080ti_32,2080ti_64,titan_xp_1,titan_xp_32,titan_xp_64,v100_1,v100_32,v100_64' \
	--meta_valid_devices 'titan_rtx_1,titan_rtx_32' \
	--meta_test_devices 'titan_rtx_64' 

For example,

$ python main.py \
	--search_space ofa \
	--mode nas \
	--num_samples 10 \
	--seed 3 \
	--num_meta_train_sample 4000 \
	--load_path './data/ofa/checkpoint/help_max_corr.pt' \
	--nas_target_device titan_rtx_64 \
	--latency_constraint 20 \
	--exp_name 'nas' \
	--meta_train_devices '2080ti_1,2080ti_32,2080ti_64,titan_xp_1,titan_xp_32,titan_xp_64,v100_1,v100_32,v100_64' \
	--meta_valid_devices 'titan_rtx_1,titan_rtx_32' \
	--meta_test_devices 'titan_rtx_64' 

or you can use provided script:

$ bash script/run_nas_ofa.sh [GPU_NUM]

Efficient Latency-constrained NAS Results (Table 5)

Device Sample from
Target Device
Latency
Constraint (ms)
Latency
(ms)
Accuracy
(%)
Architecture
config
GPU Titan RTX
(Batch 64)
10 20
23
28
20.3
23.1
28.6
76.0
76.8
77.9
link
link
link
CPU Intel Gold 6226 20 170
190
147
171
77.6
78.1
link
link
Jetson AGX Xavier 10 65
70
67.4
76.4
75.9
76.4
link
link

3.3. Validating obtained neural architecture on ImageNet-1K

$ python validate_imagenet.py \
		--config_path [Path of neural architecture config file]
		--imagenet_save_path [Path of ImageNet 1k]

for example,

$ python validate_imagenet.py \
		--config_path 'data/ofa/architecture_config/gpu_titan_rtx_64/latency_28.6ms_accuracy_77.9.json' \
		--imagenet_save_path './ILSVRC2012'

3.4. Meta-training HELP model

Note that this process is performed only once for all results.

$ python main.py --search_space ofa \
		--mode 'meta-train' \
		--num_samples 10 \
		--num_meta_train_sample 4000 \
		--exp_name [EXP_NAME] \
                --meta_train_devices '2080ti_1,2080ti_32,2080ti_64,titan_xp_1,titan_xp_32,titan_xp_64,v100_1,v100_32,v100_64' \
                --meta_valid_devices 'titan_rtx_1,titan_rtx_32' \
                --meta_test_devices 'titan_rtx_64' \
		--seed 3 # e.g.) 1, 2, 3

or you can use provided script:

$ bash script/run_meta_training_ofa.sh [GPU_NUM]

4. Main Results on HAT Search Space

We provide the neural architecture configurations to reproduce the results of machine translation (WMT'14 En-De Task) on HAT search space.

Efficient Latency-constrained NAS Results

Task Device Samples from
Target Device
Latency BLEU score Architecture
Config
WMT'14 En-De GPU NVIDIA Titan RTX 10 74.0ms
106.5ms
27.19
27.44
link
link
WMT'14 En-De CPU Intel Xeon Gold 6240 10 159.6ms
343.2ms
27.20
27.52
link
link

You can test models by BLEU score and Computing Latency.

Reference

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (ICML17)

Meta-SGD: Learning to Learn Quickly for Few-Shot Learning

Once-for-All: Train One Network and Specialize it for Efficient Deployment (ICLR20)

NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search (ICLR20)

BRP-NAS: Prediction-based NAS using GCNs (NeurIPS20)

HAT: Hardware Aware Transformers for Efficient Natural Language Processing (ACL20)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets (ICLR21)

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark (ICLR21)

Owner
Ph.D. student @ School of Computing, Korea Advanced Institute of Science and Technology (KAIST)
Ludwig Benchmarking Toolkit

Ludwig Benchmarking Toolkit The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an

HazyResearch 17 Nov 18, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022