An open source Jetson Nano baseboard and tools to design your own.

Related tags

Deep Learninghardware
Overview

My Jetson Nano Baseboard

Render of My Jetson Nano Baseboard

Picture of My Jetson Nano Baseboard

This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It also repurposes some of the Jetson Nano’s interface signals for simple beginner projects.

This baseboard, as designed, contains:

  • A 5V, 4A DC barrel jack
  • 4 USB 2.0 connectors
  • An HDMI connector
  • A UART-to-USB bridge
  • A debug USB
  • A 40-pin GPIO
  • A servo header
  • Three user-interactive buttons (power, reset, and force recovery)
  • A flex connector for an OLED display

Use these files to kickstart your own application-specific baseboard or implement some quick and easy projects!

Quick Start

You only need a computer to get started right now! For a more in-depth setup guide, check out docs/setup.md.

  1. Install the appropriate version of KiCAD, an open source schematic and layout design program, for your operating system here.

  2. Download this GitHub repository either as a ZIP or on the command line.

  3. Save the following symbol and footprint libraries to the “Design Files/Libraries” folder (you may have to make an account – alternatively, if you want the practice, you could try making them yourself):

    1. B3SL-1002P
    2. TPD4E02B04DQAR
    3. 3-1734592-0
    4. DC-005-2.0A
    5. ACM2012-201-2P-T001
    6. 10029449-111RLF
    7. 2309413-1
  4. Open the project (.pro) file in KiCAD.

  5. Add the symbol and footprint libraries as project-specific to your KiCAD program, following this guide. You will know that the libraries are correctly loaded when there are no more boxes with question marks.

  6. You are now set up to tinker with the files and launch your own hardware designs!

Be sure to download the Jetson Nano Product Design Guide here (NVIDIA Developer account required) to help you with your design.

If you want to make your boards and test them, you’ll need the Jetson Nano module (not included, can be bought as part of the developer kit here). It is also helpful to have electronics equipment like an oscilloscope, a multimeter, and a soldering iron.

Questions and Improvements

If you have a suggestion, please open an issue on GitHub.

Please share your projects with us on the Jetson Developer Forums.

Comments
  • Servo PWM signal does not switch logic levels, remains high

    Servo PWM signal does not switch logic levels, remains high

    Problem When running the sampleproj/servo_pwm.py script, SERVO_PWM remains high, even as the GPIO07 pin outputs a PWM signal.

    Release A00, no modifications

    Observed Behavior Servo PWM remains high even when PWM script is run.

    GPIO07 at 40-pin header: gpio7 configured0

    SERVO_PWM at servo header: gpio 7

    Root Cause Theory The pullup could be too strong; the transistor connection may not be consistent across boards. This is another issue that switching to a larger package transistor should fix.

    Suggested Next Steps

    • Switch to larger package transistor (as in issue #5 & 2)
    • Test additional boards to ensure transistor connection remains consistent
    bug A01 Fix 
    opened by wolframalexa 1
  • Fails sleep/wake software cycle

    Fails sleep/wake software cycle

    Problem Board cannot be wake from software; the physical button must be pushed.

    Release A00, no modifications

    Observed Behavior When running the validation/sleep_func.sh script, the device does not wake until the power button is pushed.

    Root Cause Theory An issue with how L4T interacts with the baseboard.

    Suggested Next Steps

    • Probe power logic signals to ensure sequencing is correct
    • Read L4T documentation for power design
    bug 
    opened by wolframalexa 1
  • OLED display does not fit in specified connector

    OLED display does not fit in specified connector

    Problem The specified OLED display does not fit in the specified connector. Users cannot use the display.

    Release A00, no modifications

    Observed Behavior The connector is too small for the display.

    Root Cause Theory Mistakes were made.

    Suggested Next Steps Choose new connector for display.

    bug A01 Fix 
    opened by wolframalexa 1
  • Fan PWM signal not in compliance

    Fan PWM signal not in compliance

    Problem Users cannot use a fan, because the fan PWM signal is not in electrical compliance.

    Observed Behavior GPIO14 provides a nice PWM signal, but the signal becomes less crisp as it goes through the level shifter. In both images below, the blue line is the FAN_PWM_LS node. Yellow: left = GPIO14, right = FAN_PWM_INV.

    image image

    The transistor Q3 should invert the PWM signal, but does not appear to do so.

    Root Cause Theory At 20kHz, it is unlikely the fan signal is switching too fast for the transistor. It may be due to a transistor misalignment; switch from the DMN26D0UFB4-7 to the DMN26D0UT-7, which is in a larger SOT-523 package, to avoid misalignments.

    Suggested Next Steps Ask a more experienced engineer. May need a larger pullup, or more power control.

    bug A01 Fix 
    opened by wolframalexa 1
  • Some USB 2.0 type A ports are not functional

    Some USB 2.0 type A ports are not functional

    Problem Some USB ports on some boards do not respond when a USB mouse or keyboard is plugged into them.

    Observed Behavior When a USB mouse or keyboard is plugged into one of the four type A ports, it occasionally does not work (the pointer does not move, no text appears on screen). This hinders the ability for the user to interact with the display, and to use the USB devices they need.

    Root Cause Theory This is only present on some ports on some boards; it could be a manufacturing or hub chip error.

    Suggested Next Steps

    • Visually check all USB components to ensure there is no damage
    • Ensure hub chip is strapped correctly
    • Ensure USB layout guidelines are followed for signal integrity
    bug A01 Fix 
    opened by wolframalexa 1
  • Low-resolution HDMI (1280x720)

    Low-resolution HDMI (1280x720)

    Problem The maximum HDMI resolution seems to be 1280x720, whereas the Jetson Nano achieves a resolution of 2560x1440. As a result, the display appears zoomed in.

    Release A00, no modifications

    Observed Behavior

    • This is present on all boards, with the same module as on the official baseboard - probably a hardware design issue, and not a software issue
    • The resolution on the official Jetson Nano is twice that of "My Jetson Nano Baseboard"

    Root Cause Theory Resistor values may need to be tuned for better resolutions. Additionally, an EEPROM may be read to confirm HDMI resolution.

    Suggested Next Steps Investigate L4T behavior with regard to HDMI and resistor tuning on CEC line.

    bug A01 Fix 
    opened by wolframalexa 1
  • Power LED does not light up on some boards

    Power LED does not light up on some boards

    Problem On some boards, the power LED D6 does not light, even though the board completes its power-on sequence and has booted normally.

    Release A00, no modifications

    Observed Behavior

    • The LED is the correct direction
    • The board completes its power on sequence and the software functions as expected
    • GPIO04 remains LOW at 0.6V, even though it should be driven HIGH upon power-up
    • There is no measured voltage drop across R32
    • There is an insufficient voltage drop across D6

    Root Cause Theory The gate threshold voltage varies depending on the individual transistor. It could be that this transistor has a higher V_GS and does not turn on when GPIO04 is at 0.6V. Additionally, the transistor Q7 could be misaligned.

    Suggested Next Steps

    • Investigate behavior of GPIO04, which should be HIGH upon power-on. Remove R31 to ensure no loading effects from transistor.
    • Change all transistors DMN26D0UFB4-7 to the DMN26D0UT-7, which is in a larger SOT-523 package, to avoid misalignments.
    bug A01 Fix 
    opened by wolframalexa 1
  • Make silkscreen more readable

    Make silkscreen more readable

    • Increase silkscreen size from 0.5x0.5mm to 0.438x0.7mm to make the text more readable.
    • Add polarity for all ICs and polarized components to aid in soldering
    • Add silkscreen on front for 40-pin header
    enhancement A01 Fix 
    opened by wolframalexa 0
Releases(A01)
  • A01(Aug 12, 2021)

    After having manufactured the boards and validated them, we're fixing some functionality. Here are the changes, which you can read about in our issues:

    • Fix footprints (#11):
      • DC Jack flipped
      • GPIO header flipped (pin 1 should be pin 2)
      • USB footprint with soldermask (#4)
      • New OLED display connector & display (#6)
    • Usability enhancements, with more readable silkscreen (#10)
    • BOM errors:
      • SODIMM connector (#9)
      • HDMI current limiting resistor, which allows for correct resolution (#3)
      • Larger transistor footprint to avoid misalignments (#8, #5)
    • Fix pullup
      • Add pullup to GPIO04 (#2)
    Source code(tar.gz)
    Source code(zip)
  • A00(Jul 28, 2021)

Owner
NVIDIA AI IOT
NVIDIA AI IOT
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022