code for CVPR paper Zero-shot Instance Segmentation

Overview

Code for CVPR2021 paper

Zero-shot Instance Segmentation

Code requirements

  • python: python3.7
  • nvidia GPU
  • pytorch1.1.0
  • GCC >=5.4
  • NCCL 2
  • the other python libs in requirement.txt

Install

conda create -n zsi python=3.7 -y
conda activate zsi

conda install pytorch=1.1.0 torchvision=0.3.0 cudatoolkit=10.0 -c pytorch

pip install cython && pip --no-cache-dir install -r requirements.txt
   
python setup.py develop

Dataset prepare

  • Download the train and test annotations files for zsi from annotations, put all json label file to

    data/coco/annotations/
    
  • Download MSCOCO-2014 dataset and unzip the images it to path:

    data/coco/train2014/
    data/coco/val2014/
    
  • Training:

    • 48/17 split:

         chmod +x tools/dist_train.sh
         ./tools/dist_train.sh configs/zsi/train/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_decoder.py 4
      
    • 65/15 split:

      chmod +x tools/dist_train.sh
      ./tools/dist_train.sh configs/zsi/train/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_65_15_decoder_notanh.py 4
      
  • Inference & Evaluate:

    • ZSI task:

      • 48/17 split ZSI task:
        • download 48/17 ZSI model, put it in checkpoints/ZSI_48_17.pth

        • inference:

          chmod +x tools/dist_test.sh
          ./tools/dist_test.sh configs/zsi/48_17/test/zsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_decoder.py checkpoints/ZSI_48_17.pth 4 --json_out results/zsi_48_17.json
          
        • our results zsi_48_17.bbox.json and zsi_48_17.segm.json can also downloaded from zsi_48_17_reults.

        • evaluate:

          • for zsd performance
            python tools/zsi_coco_eval.py results/zsi_48_17.bbox.json --ann data/coco/annotations/instances_val2014_unseen_48_17.json
            
          • for zsi performance
            python tools/zsi_coco_eval.py results/zsi_48_17.segm.json --ann data/coco/annotations/instances_val2014_unseen_48_17.json --types segm
            
      • 65/15 split ZSI task:
        • download 65/15 ZSI model, put it in checkpoints/ZSI_65_15.pth

        • inference:

          chmod +x tools/dist_test.sh
          ./toools/dist_test.sh configs/zsi/65_15/test/zsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_65_15_decoder_notanh.py checkpoints/ZSI_65_15.pth 4 --json_out results/zsi_65_15.json
          
        • our results zsi_65_15.bbox.json and zsi_65_15.segm.json can also downloaded from zsi_65_15_reults.

        • evaluate:

          • for zsd performance
            python tools/zsi_coco_eval.py results/zsi_65_15.bbox.json --ann data/coco/annotations/instances_val2014_unseen_65_15.json
            
          • for zsi performance
            python tools/zsi_coco_eval.py results/zsi_65_15.segm.json --ann data/coco/annotations/instances_val2014_unseen_65_15.json --types segm
            
    • GZSI task:

      • 48/17 split GZSI task:
        • use the same model file ZSI_48_17.pth in ZSI task
        • inference:
          chmod +x tools/dist_test.sh
          ./tools/dist_test.sh configs/zsi/48_17/test/gzsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_decoder_gzsi.py checkpoints/ZSI_48_17.pth 4 --json_out results/gzsi_48_17.json
          
        • our results gzsi_48_17.bbox.json and gzsi_48_17.segm.json can also downloaded from gzsi_48_17_results.
        • evaluate:
          • for gzsd
            python tools/gzsi_coco_eval.py results/gzsi_48_17.bbox.json --ann data/coco/annotations/instances_val2014_gzsi_48_17.json --gzsi --num-seen-classes 48
            
          • for gzsi
            python tools/gzsi_coco_eval.py results/gzsi_48_17.segm.json --ann data/coco/annotations/instances_val2014_gzsi_48_17.json --gzsi --num-seen-classes 48 --types segm
            
      • 65/15 split GZSI task:
        • use the same model file ZSI_48_17.pth in ZSI task
        • inference:
          chmod +x tools/dist_test.sh
          ./tools/dist_test.sh configs/zsi/65_15/test/gzsi/zero-shot-mask-rcnn-BARPN-bbox_mask_sync_bg_65_15_decoder_notanh_gzsi.py checkpoints/ZSI_65_15.pth 4 --json_out results/gzsi_65_15.json
          
        • our results gzsi_65_15.bbox.json and gzsi_65_15.segm.json can also downloaded from gzsi_65_15_results.
        • evaluate:
          • for gzsd
            python tools/gzsi_coco_eval.py results/gzsi_65_15.bbox.json --ann data/coco/annotations/instances_val2014_gzsi_65_15.json --gzsd --num-seen-classes 65
            
          • for gzsi
            python tools/gzsi_coco_eval.py results/gzsi_65_15.segm.json --ann data/coco/annotations/instances_val2014_gzsi_65_15.json --gzsd --num-seen-classes 65 --types segm
            

License

ZSI is released under MIT License.

Citing

If you use ZSI in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@InProceedings{zhengye2021zsi,
  author  =  {Ye, Zheng and Jiahong, Wu and Yongqiag, Qin and Faen, Zhang and Li, Cui},
  title   =  {Zero-shot Instance Segmentation},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2021}
}
Owner
zhengye
CS Phd
zhengye
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022