Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

Overview

RefinerViT

This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm and include the relabbeling trick included in TokenLabelling.

Introduction

Refined Vision Transformer is initially described in arxiv, which observes vision transformers require much more datafor model pre-training. Most of recent works thus are dedicated to designing morecomplex architectures or training methods to address the data-efficiency issue ofViTs. However, few of them explore improving the self-attention mechanism, akey factor distinguishing ViTs from CNNs. Different from existing works, weintroduce a conceptually simple scheme, calledrefiner, to directly refine the self-attention maps of ViTs. Specifically, refiner exploresattention expansionthatprojects the multi-head attention maps to a higher-dimensional space to promotetheir diversity. Further, refiner applies convolutions to augment local patternsof the attention maps, which we show is equivalent to adistributed local atten-tion—features are aggregated locally with learnable kernels and then globallyaggregated with self-attention. Extensive experiments demonstrate that refinerworks surprisingly well. Significantly, it enables ViTs to achieve 86% top-1 classifi-cation accuracy on ImageNet with only 81M parameters.

Please run git clone with --recursive to clone timm as submodule and install it with cd pytorch-image-models && pip install -e ./

Requirements

torch>=1.4.0 torchvision>=0.5.0 pyyaml numpy timm==0.4.5

A summary of the results are shown below for quick reference. Details can be found in the paper.

Model head layer dim Image resolution Param Top 1
Refiner-ViT-S 12 16 384 224 25M 83.6
Refiner-ViT-S 12 16 384 384 25M 84.6
Refiner-ViT-M 12 32 420 224 55M 84.6
Refiner-ViT-M 12 32 420 384 55M 85.6
Refiner-ViT-L 16 32 512 224 81M 84.9
Refiner-ViT-L 16 32 512 384 81M 85.8
Refiner-ViT-L 16 32 512 448 81M 86.0

Training

Train the Refiner-ViT-S from scratch:

bash run.sh scripts/refiner_s.yaml 

To use the re-labbeling tricks for improving the accuracy, download the relabel_data based on NFNet. This is provided in TokenLabelling repo. Then, copy the relabbeling data to the data folder.

Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022