Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Overview

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild

Akash Sengupta, Ignas Budvytis, Roberto Cipolla
ICCV 2021
[paper+supplementary][poster][results video]

This is the official code repository of the above paper, which takes a probabilistic approach to 3D human shape and pose estimation and predicts multiple plausible 3D reconstruction samples given an input image.

teaser

This repository contains inference, training (TODO) and evaluation (TODO) code. A few weaknesses of this approach, and future research directions, are listed below (TODO). If you find this code useful in your research, please cite the following publication:

@InProceedings{sengupta2021hierprobhuman,
               author = {Sengupta, Akash and Budvytis, Ignas and Cipolla, Roberto},
               title = {{Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild}},
               booktitle = {International Conference on Computer Vision},
               month = {October},
               year = {2021}                         
}

Installation

Requirements

  • Linux or macOS
  • Python ≥ 3.6

Instructions

We recommend using a virtual environment to install relevant dependencies:

python3 -m venv HierProbHuman
source HierProbHuman/bin/activate

Install torch and torchvision (the code has been tested with v1.6.0 of torch), as well as other dependencies:

pip install torch==1.6.0 torchvision==0.7.0
pip install -r requirements.txt

Finally, install pytorch3d, which we use for data generation during training and visualisation during inference. To do so, you will need to first install the CUB library following the instructions here. Then you may install pytorch3d - note that the code has been tested with v0.3.0 of pytorch3d, and we recommend installing this version using:

pip install "git+https://github.com/facebookresearch/[email protected]"

Model files

You will need to download the SMPL model. The neutral model is required for training and running the demo code. If you want to evaluate the model on datasets with gendered SMPL labels (such as 3DPW and SSP-3D), the male and female models are available here. You will need to convert the SMPL model files to be compatible with python3 by removing any chumpy objects. To do so, please follow the instructions here.

Download pre-trained model checkpoints for our 3D Shape/Pose network, as well as for 2D Pose HRNet-W48 from here.

Place the SMPL model files and network checkpoints in the model_files directory, which should have the following structure. If the files are placed elsewhere, you will need to update configs/paths.py accordingly.

HierarchicalProbabilistic3DHuman
├── model_files                                  # Folder with model files
│   ├── smpl
│   │   ├── SMPL_NEUTRAL.pkl                     # Gender-neutral SMPL model
│   │   ├── SMPL_MALE.pkl                        # Male SMPL model
│   │   ├── SMPL_FEMALE.pkl                      # Female SMPL model
│   ├── poseMF_shapeGaussian_net_weights.tar     # Pose/Shape distribution predictor checkpoint
│   ├── pose_hrnet_w48_384x288.pth               # Pose2D HRNet checkpoint
│   ├── cocoplus_regressor.npy                   # Cocoplus joints regressor
│   ├── J_regressor_h36m.npy                     # Human3.6M joints regressor
│   ├── J_regressor_extra.npy                    # Extra joints regressor
│   └── UV_Processed.mat                         # DensePose UV coordinates for SMPL mesh             
└── ...

Inference

run_predict.py is used to run inference on a given folder of input images. For example, to run inference on the demo folder, do:

python run_predict.py --image_dir ./demo/ --save_dir ./output/ --visualise_samples --visualise_uncropped

This will first detect human bounding boxes in the input images using Mask-RCNN. If your input images are already cropped and centred around the subject of interest, you may skip this step using --cropped_images as an option. The 3D Shape/Pose network is somewhat sensitive to cropping and centering - this is a good place to start troubleshooting in case of poor results.

Inference can be slow due to the rejection sampling procedure used to estimate per-vertex 3D uncertainty. If you are not interested in per-vertex uncertainty, you may modify predict/predict_poseMF_shapeGaussian_net.py by commenting out code related to sampling, and use a plain texture to render meshes for visualisation (this will be cleaned up and added as an option to in the run_predict.py future).

TODO

  • Training Code
  • Evaluation Code for 3DPW and SSP-3D
  • Gendered pre-trained models for improved shape estimation
  • Weaknesses and future research

Acknowledgments

Code was adapted from/influenced by the following repos - thanks to the authors!

Owner
Akash Sengupta
Akash Sengupta
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Intermdiate layer matters - SSL The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper. Downl

Aakash Kaku 35 Sep 19, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022