Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Overview

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild

Akash Sengupta, Ignas Budvytis, Roberto Cipolla
ICCV 2021
[paper+supplementary][poster][results video]

This is the official code repository of the above paper, which takes a probabilistic approach to 3D human shape and pose estimation and predicts multiple plausible 3D reconstruction samples given an input image.

teaser

This repository contains inference, training (TODO) and evaluation (TODO) code. A few weaknesses of this approach, and future research directions, are listed below (TODO). If you find this code useful in your research, please cite the following publication:

@InProceedings{sengupta2021hierprobhuman,
               author = {Sengupta, Akash and Budvytis, Ignas and Cipolla, Roberto},
               title = {{Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild}},
               booktitle = {International Conference on Computer Vision},
               month = {October},
               year = {2021}                         
}

Installation

Requirements

  • Linux or macOS
  • Python ≥ 3.6

Instructions

We recommend using a virtual environment to install relevant dependencies:

python3 -m venv HierProbHuman
source HierProbHuman/bin/activate

Install torch and torchvision (the code has been tested with v1.6.0 of torch), as well as other dependencies:

pip install torch==1.6.0 torchvision==0.7.0
pip install -r requirements.txt

Finally, install pytorch3d, which we use for data generation during training and visualisation during inference. To do so, you will need to first install the CUB library following the instructions here. Then you may install pytorch3d - note that the code has been tested with v0.3.0 of pytorch3d, and we recommend installing this version using:

pip install "git+https://github.com/facebookresearch/[email protected]"

Model files

You will need to download the SMPL model. The neutral model is required for training and running the demo code. If you want to evaluate the model on datasets with gendered SMPL labels (such as 3DPW and SSP-3D), the male and female models are available here. You will need to convert the SMPL model files to be compatible with python3 by removing any chumpy objects. To do so, please follow the instructions here.

Download pre-trained model checkpoints for our 3D Shape/Pose network, as well as for 2D Pose HRNet-W48 from here.

Place the SMPL model files and network checkpoints in the model_files directory, which should have the following structure. If the files are placed elsewhere, you will need to update configs/paths.py accordingly.

HierarchicalProbabilistic3DHuman
├── model_files                                  # Folder with model files
│   ├── smpl
│   │   ├── SMPL_NEUTRAL.pkl                     # Gender-neutral SMPL model
│   │   ├── SMPL_MALE.pkl                        # Male SMPL model
│   │   ├── SMPL_FEMALE.pkl                      # Female SMPL model
│   ├── poseMF_shapeGaussian_net_weights.tar     # Pose/Shape distribution predictor checkpoint
│   ├── pose_hrnet_w48_384x288.pth               # Pose2D HRNet checkpoint
│   ├── cocoplus_regressor.npy                   # Cocoplus joints regressor
│   ├── J_regressor_h36m.npy                     # Human3.6M joints regressor
│   ├── J_regressor_extra.npy                    # Extra joints regressor
│   └── UV_Processed.mat                         # DensePose UV coordinates for SMPL mesh             
└── ...

Inference

run_predict.py is used to run inference on a given folder of input images. For example, to run inference on the demo folder, do:

python run_predict.py --image_dir ./demo/ --save_dir ./output/ --visualise_samples --visualise_uncropped

This will first detect human bounding boxes in the input images using Mask-RCNN. If your input images are already cropped and centred around the subject of interest, you may skip this step using --cropped_images as an option. The 3D Shape/Pose network is somewhat sensitive to cropping and centering - this is a good place to start troubleshooting in case of poor results.

Inference can be slow due to the rejection sampling procedure used to estimate per-vertex 3D uncertainty. If you are not interested in per-vertex uncertainty, you may modify predict/predict_poseMF_shapeGaussian_net.py by commenting out code related to sampling, and use a plain texture to render meshes for visualisation (this will be cleaned up and added as an option to in the run_predict.py future).

TODO

  • Training Code
  • Evaluation Code for 3DPW and SSP-3D
  • Gendered pre-trained models for improved shape estimation
  • Weaknesses and future research

Acknowledgments

Code was adapted from/influenced by the following repos - thanks to the authors!

Owner
Akash Sengupta
Akash Sengupta
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Unsupervised Image-to-Image Translation

UNIT: UNsupervised Image-to-image Translation Networks Imaginaire Repository We have a reimplementation of the UNIT method that is more performant. It

Ming-Yu Liu 劉洺堉 1.9k Dec 26, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022