Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

Overview

On the Bottleneck of Graph Neural Networks and its Practical Implications

This is the official implementation of the paper: On the Bottleneck of Graph Neural Networks and its Practical Implications (ICLR'2021).

By Uri Alon and Eran Yahav. See also the [video], [poster] and [slides].

this repository is divided into three sub-projects:

  1. The subdirectory tf-gnn-samples is a clone of https://github.com/microsoft/tf-gnn-samples by Brockschmidt (ICML'2020). This project can be used to reproduce the QM9 and VarMisuse experiments of Section 4.2 and 4.2 in the paper. This sub-project depends on TensorFlow 1.13. The instructions for our clone are the same as their original code, except that reproducing our experiments (the QM9 dataset and VarMisuse) can be done by running the script tf-gnn-samples/run_qm9_benchs_fa.py or tf-gnn-samples/run_varmisuse_benchs_fa.py instead of their original scripts. For additional dependencies and instructions, see their original README: https://github.com/microsoft/tf-gnn-samples/blob/master/README.md. The main modification that we performed is using a Fully-Adjacent layer as the last GNN layer and we describe in our paper.
  2. The subdirectory gnn-comparison is a clone of https://github.com/diningphil/gnn-comparison by Errica et al. (ICLR'2020). This project can be used to reproduce the biological experiments (Section 4.3, the ENZYMES and NCI1 datasets). This sub-project depends on PyTorch 1.4 and Pytorch-Geometric. For additional dependencies and instructions, see their original README: https://github.com/diningphil/gnn-comparison/blob/master/README.md. The instructions for our clone are the same, except that we added an additional flag to every config_*.yml file, called last_layer_fa, which is set to True by default, and reproduces our experiments. The main modification that we performed is using a Fully-Adjacent layer as the last GNN layer.
  3. The main directory (in which this file resides) can be used to reproduce the experiments of Section 4.1 in the paper, for the "Tree-NeighborsMatch" problem. The rest of this README file includes the instructions for this main directory. This repository can be used to reproduce the experiments of

This project was designed to be useful in experimenting with new GNN architectures and new solutions for the over-squashing problem.

Feel free to open an issue with any questions.

The Tree-NeighborsMatch problem

alt text

Requirements

Dependencies

This project is based on PyTorch 1.4.0 and the PyTorch Geometric library.

pip install -r requirements.txt

The requirements.txt file lists the additional requirements. However, PyTorch Geometric might requires manual installation, and we thus recommend to use the requirements.txt file only afterward.

Verify that importing the dependencies goes without errors:

python -c 'import torch; import torch_geometric'

Hardware

Training on large trees (depth=8) might require ~60GB of RAM and about 10GB of GPU memory. GPU memory can be compromised by using a smaller batch size and using the --accum_grad flag.

For example, instead of running:

python main.py --batch_size 1024 --type GGNN

The following uses gradient accumulation, and takes less GPU memory:

python main.py --batch_size 512 --accum_grad 2 --type GGNN

Reproducing Experiments

To run a single experiment from the paper, run:

python main.py --help

And see the available flags. For example, to train a GGNN with depth=4, run:

python main.py --task DICTIONARY --eval_every 1000 --depth 4 --num_layers 5 --batch_size 1024 --type GGNN

To train a GNN across all depths, run one of the following:

python run-gcn-2-8.py
python run-gat-2-8.py
python run-ggnn-2-8.py
python run-gin-2-8.py

Results

The results of running the above scripts are (Section 4.1 in the paper):

alt text

r: 2 3 4 5 6 7 8
GGNN 1.0 1.0 1.0 0.60 0.38 0.21 0.16
GAT 1.0 1.0 1.0 0.41 0.21 0.15 0.11
GIN 1.0 1.0 0.77 0.29 0.20
GCN 1.0 1.0 0.70 0.19 0.14 0.09 0.08

Experiment with other GNN types

To experiment with other GNN types:

  • Add the new GNN type to the GNN_TYPE enum here, for example: MY_NEW_TYPE = auto()
  • Add another elif self is GNN_TYPE.MY_NEW_TYPE: to instantiate the new GNN type object here
  • Use the new type as a flag for the main.py file:
python main.py --type MY_NEW_TYPE ...

Citation

If you want to cite this work, please use this bibtex entry:

@inproceedings{
    alon2021on,
    title={On the Bottleneck of Graph Neural Networks and its Practical Implications},
    author={Uri Alon and Eran Yahav},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=i80OPhOCVH2}
}
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Cowsay - A rewrite of cowsay in python

Python Cowsay A rewrite of cowsay in python. Allows for parsing of existing .cow

James Ansley 3 Jun 27, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022