Collection of generative models in Pytorch version.

Overview

pytorch-generative-model-collections

Original : [Tensorflow version]

Pytorch implementation of various GANs.

This repository was re-implemented with reference to tensorflow-generative-model-collections by Hwalsuk Lee

I tried to implement this repository as much as possible with tensorflow-generative-model-collections, But some models are a little different.

This repository is included code for CPU mode Pytorch, but i did not test. I tested only in GPU mode Pytorch.

Dataset

  • MNIST
  • Fashion-MNIST
  • CIFAR10
  • SVHN
  • STL10
  • LSUN-bed

I only tested the code on MNIST and Fashion-MNIST.

Generative Adversarial Networks (GANs)

Lists (Table is borrowed from tensorflow-generative-model-collections)

Name Paper Link Value Function
GAN Arxiv
LSGAN Arxiv
WGAN Arxiv
WGAN_GP Arxiv
DRAGAN Arxiv
CGAN Arxiv
infoGAN Arxiv
ACGAN Arxiv
EBGAN Arxiv
BEGAN Arxiv

Variants of GAN structure (Figures are borrowed from tensorflow-generative-model-collections)

Results for mnist

Network architecture of generator and discriminator is the exaclty sames as in infoGAN paper.
For fair comparison of core ideas in all gan variants, all implementations for network architecture are kept same except EBGAN and BEGAN. Small modification is made for EBGAN/BEGAN, since those adopt auto-encoder strucutre for discriminator. But I tried to keep the capacity of discirminator.

The following results can be reproduced with command:

python main.py --dataset mnist --gan_type <TYPE> --epoch 50 --batch_size 64

Fixed generation

All results are generated from the fixed noise vector.

Name Epoch 1 Epoch 25 Epoch 50 GIF
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 25 Epoch 50 GIF
CGAN
ACGAN
infoGAN

InfoGAN : Manipulating two continous codes

All results have the same noise vector and label condition, but have different continous vector.

Name Epoch 1 Epoch 25 Epoch 50 GIF
infoGAN

Loss plot

Name Loss
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN
CGAN
ACGAN
infoGAN

Results for fashion-mnist

Comments on network architecture in mnist are also applied to here.
Fashion-mnist is a recently proposed dataset consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)

The following results can be reproduced with command:

python main.py --dataset fashion-mnist --gan_type <TYPE> --epoch 50 --batch_size 64

Fixed generation

All results are generated from the fixed noise vector.

Name Epoch 1 Epoch 25 Epoch 50 GIF
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 25 Epoch 50 GIF
CGAN
ACGAN
infoGAN

InfoGAN : Manipulating two continous codes

All results have the same noise vector and label condition, but have different continous vector.

Name Epoch 1 Epoch 25 Epoch 50 GIF
infoGAN

Loss plot

Name Loss
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN
CGAN
ACGAN
infoGAN

Folder structure

The following shows basic folder structure.

├── main.py # gateway
├── data
│   ├── mnist # mnist data (not included in this repo)
│   ├── ...
│   ├── ...
│   └── fashion-mnist # fashion-mnist data (not included in this repo)
│
├── GAN.py # vainilla GAN
├── utils.py # utils
├── dataloader.py # dataloader
├── models # model files to be saved here
└── results # generation results to be saved here

Development Environment

  • Ubuntu 16.04 LTS
  • NVIDIA GTX 1080 ti
  • cuda 9.0
  • Python 3.5.2
  • pytorch 0.4.0
  • torchvision 0.2.1
  • numpy 1.14.3
  • matplotlib 2.2.2
  • imageio 2.3.0
  • scipy 1.1.0

Acknowledgements

This implementation has been based on tensorflow-generative-model-collections and tested with Pytorch 0.4.0 on Ubuntu 16.04 using GPU.

Owner
Hyeonwoo Kang
Hyeonwoo Kang
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
Nicholas Lee 3 Jan 09, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023