Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

Overview

GNN_PPI

Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction
Authors: Guofeng Lv, Zhiqiang Hu, Yanguang Bi, Shaoting Zhang
Arxiv extended verison (arxiv: https://arxiv.org/abs/2105.06709)

Contact: [email protected]. Any questions or discussions are welcomed!

Abstract

The study of multi-type Protein-Protein Interaction (PPI) is fundamental for understanding biological processes from a systematic perspective and revealing disease mechanisms. Existing methods suffer from significant performance degradation when tested in unseen dataset. In this paper, we investigate the problem and find that it is mainly attributed to the poor performance for inter-novel-protein interaction prediction. However, current evaluations overlook the inter-novel-protein interactions, and thus fail to give an instructive assessment. As a result, we propose to address the problem from both the evaluation and the methodology. Firstly, we design a new evaluation framework that fully respects the inter-novel-protein interactions and gives consistent assessment across datasets. Secondly, we argue that correlations between proteins must provide useful information for analysis of novel proteins, and based on this, we propose a graph neural network based method (GNN-PPI) for better inter-novel-protein interaction prediction. Experimental results on real-world datasets of different scales demonstrate that GNN-PPI significantly outperforms state-of-the-art PPI prediction methods, especially for the inter-novel-protein interaction prediction.

Contribution

  1. We design a new evaluation framework that fully respects the inter-novel-protein interactions and give consistent assessment across datasets.

    An example of the testset construction strategies under the new evaluation framework. Random is the current scheme, while Breath-First Search (BFS) and Depth-First Search (DFS) are the proposed schemes.
  2. We propose to incorporate correlation between proteins into the PPI prediction problem. A graph neural network based method is presented to model the correlations.

    Development and evaluation of the GNN-PPI framework. Pairwise interaction data are firstly assembled to build the graph, where proteins serve as the nodes and interactions as the edges. The testset is constructed by firstly selecting the root node and then performing the proposed BFS or DFS strategy. The model is developed by firstly performing embedding for each protein to obtain predefined features, then processed by Convolution, Pooling, BiGRU and FC modules to extract protein-independent encoding (PIE) features, which are finally aggregated by graph convolutions and arrive at protein-graph encoding (PGE) features. Features of the pair proteins in interaction are multiplied and classified, supervised by the trainset labels.
  3. The proposed GNN-PPI model achieves state-of-the-art performance in real datasets of different scales, especially for the inter-novel-protein interaction prediction.

    For further investigation, we divide the testset into BS, ES and NS subsets, where BS denotes Both of the pair proteins in interaction were Seen during training, ES denotes Either (but not both) of the pair proteins was Seen, and NS denotes Neither proteins were Seen during training. We regard ES and NS as inter-novel-protein interactions. Existing methods suffer from significant performance degradation when tested on unseen Protein-protein interaction, especially inter-novel-protein interactions. On the contrary, GNN-PPI can handle this situation well, whether it is BS, ES or NS, the performance will not be greatly reduced.

Experimental Results

We evaluate the multi-label PPI prediction performance using micro-F1. This is because micro-averaging will emphasize the common labels in the dataset, which gives each sample the same importance.

Benchmark

  • Performance of GNN-PPI against comparative methods over different datasets and data partition schemes.

In-depth Analysis

  • In-depth analysis between PIPR and GNN-PPI over BS, ES and NS subsets.

Model Generalization

  • Testing on trainset-homologous testset vs. unseen testset, under different evaluations.

PPI Network Graph Construction

  • The impact of the PPI network graph construction method.

Using GNN_PPI

This repository contains:

  • Environment Setup
  • Data Processing
  • Training
  • Testing
  • Inference

Environment Setup

base environment: python 3.7, cuda 10.2, pytorch 1.6, torchvision 0.7.0, tensorboardX 2.1
pytorch-geometric:
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-geometric

Data Processing

The data processing codes in gnn_data.py (Class GNN_DATA), including:

  • data reading (def __init__)
  • protein vectorize (def get_feature_origin)
  • generate pyg data (def generate_data)
  • Data partition (def split_dataset)

Training

Training codes in gnn_train.py, and the run script in run.py.

"python -u gnn_train.py \
    --description={} \              # Description of the current training task
    --ppi_path={} \                 # ppi dataset
    --pseq_path={} \                # protein sequence
    --vec_path={} \                 # protein pretrained-embedding
    --split_new={} \                # whether to generate a new data partition, or use the previous
    --split_mode={} \               # data split mode
    --train_valid_index_path={} \   # Data partition json file path
    --use_lr_scheduler={} \         # whether to use training learning rate scheduler
    --save_path={} \                # save model, config and results dir path
    --graph_only_train={} \         # PPI network graph construction method, True: GCT, False: GCA
    --batch_size={} \               # Batch size
    --epochs={} \                   # Train epochs
    ".format(description, ppi_path, pseq_path, vec_path, 
            split_new, split_mode, train_valid_index_path,
            use_lr_scheduler, save_path, graph_only_train, 
            batch_size, epochs)

Dataset Download:

STRING(we use Homo sapiens subset):

SHS27k and SHS148k:

This repositorie uses the processed dataset download path:

Testing

Testing codes in gnn_test.py and gnn_test_bigger.py, and the run script in run_test.py and run_test_bigger.py.

gnn_test.py: It can test the overall performance, and can also make in-depth analysis to test the performance of different test data separately.
gnn_test_bigger.py: It can test the performance between the trainset-homologous testset and the unseen testset.
Running script run_test_bigger.py as above.

Inference

If you have your own dataset or want to save the prediction results, you can use inference.py. After execution, a ppi csv file will be generated to record the predicted PPI type of each pair of interacting proteins.

Running script run_inference.py as above.

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@misc{lv2021learning,
    title={Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction}, 
    author={Guofeng Lv and Zhiqiang Hu and Yanguang Bi and Shaoting Zhang},
    year={2021},
    eprint={2105.06709},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
You might also like...
Codes for NAACL 2021 Paper
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

Official codes for the paper
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Codes for ACL-IJCNLP 2021 Paper
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Implementation of CVPR 2021 paper
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Releases(v1.0)
Owner
Ursa Zrimsek
Ursa Zrimsek
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Namish Khanna 40 Oct 11, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022