Improving Machine Translation Systems via Isotopic Replacement

Related tags

Deep LearningCAT
Overview

CAT (Improving Machine Translation Systems via Isotopic Replacement)

Machine translation plays an essential role in people’s daily international communication. However, machine translation systems are far from perfect. To tackle this problem, researchers have proposed several approaches to testing machine translation. A promising trend among these approaches is to use word replacement, where only one word in the original sentence is replaced with another word to form a sentence pair. However, precise control of the impact of word replacement remains an outstanding issue in these approaches.

To address this issue, we propose CAT, a novel word-replacement-based approach, whose basic idea is to identify word replacement with controlled impact (referred to as isotopic replacement). To achieve this purpose, we use a neural-based language model to encode the sentence context, and design a neural-network-based algorithm to evaluate context-aware semantic similarity between two words. Furthermore, similar to TransRepair, a state-of-the-art word-replacement-based approach, CAT also provides automatic fixing of revealed bugs without model retraining.

Our evaluation on Google Translate and Transformer indicates that CAT achieves significant improvements over TransRepair. In particular, 1) CAT detects seven more types of bugs than TransRepair; 2) CAT detects 129% more translation bugs than TransRepair; 3) CAT repairs twice more bugs than TransRepair, many of which may bring serious consequences if left unfixed; and 4) CAT has better efficiency than TransRepair in input generation (0.01s v.s. 0.41s) and comparable efficiency with TransRepair in bug repair (1.92s v.s. 1.34s).

The main file tree of CAT

.
├── Labeled data
│   ├── RQ1 Test Input Generation
│   ├── RQ2 Bug Detection
│   ├── RQ3 Bug Repair
│   └── Extended Analysis
├── TS
├── MutantGen-Test.py
├── MutantGen-Repair.py
├── Repair.py
├── Testing.py
├── NewThres
│   ├── TestGenerator-NMT
│   └── TestGenerator-NMTRep
└── NMT_zh_en0-8Mu
    ├── padTrans
    └── repair-new

The manual assessment results are in the Labeled data folder.

For Testing:

python3 Testing.py

After it, the results are in the NMT_zh_en0-8Mu/padTrans folder.

For Repair:

python3 Repair.py

After it, the results are in the TS/quickstart0/repair-NEW folder.

Data

The LookUpTable.txt used in NMT_zh_en_0-8Mu/padTrans and NMT_zh_en_0-8Mu/repair-new is available at https://drive.google.com/file/d/1fjGpryzGohla0ZA4u7KDgRJeAHegy0A1/view?usp=sharing

Dependenices

NLTK 3.2.1
Pytorch 1.6.1
Python 3.7
Ubuntu 16.04
Transformers 3.3.0
Owner
Zeyu Sun
A Ph.D. student.
Zeyu Sun
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021