Video Contrastive Learning with Global Context

Overview

Video Contrastive Learning with Global Context (VCLR)

This is the official PyTorch implementation of our VCLR paper.

Install dependencies

  • environments
    conda create --name vclr python=3.7
    conda activate vclr
    conda install numpy scipy scikit-learn matplotlib scikit-image
    pip install torch==1.7.1 torchvision==0.8.2
    pip install opencv-python tqdm termcolor gcc7 ffmpeg tensorflow==1.15.2
    pip install mmcv-full==1.2.7

Prepare datasets

Please refer to PREPARE_DATA to prepare the datasets.

Prepare pretrained MoCo weights

In this work, we follow SeCo and use the pretrained weights of MoCov2 as initialization.

cd ~
git clone https://github.com/amazon-research/video-contrastive-learning.git
cd video-contrastive-learning
mkdir pretrain && cd pretrain
wget https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_200ep/moco_v2_200ep_pretrain.pth.tar
cd ..

Self-supervised pretraining

bash shell/main_train.sh

Checkpoints will be saved to ./results

Downstream tasks

Linear evaluation

In order to evaluate the effectiveness of self-supervised learning, we conduct a linear evaluation (probing) on Kinetics400 dataset. Basically, we first extract features from the pretrained weight and then train a SVM classifier to see how the learned features perform.

bash shell/eval_svm.sh
  • Results

    Arch Pretrained dataset Epoch Pretrained model Acc. on K400
    ResNet50 Kinetics400 400 Download link 64.1

Video retrieval

bash shell/eval_retrieval.sh

Action recognition & action localization

Here, we use mmaction2 for both tasks. If you are not familiar with mmaction2, you can read the official documentation.

Installation

  • Step1: Install mmaction2

    To make sure the results can be reproduced, please use our forked version of mmaction2 (version: 0.11.0):

    conda activate vclr
    cd ~
    git clone https://github.com/KuangHaofei/mmaction2
    
    cd mmaction2
    pip install -v -e .
  • Step2: Prepare the pretrained weights

    Our pretrained backbone have different format with the backbone of mmaction2, it should be transferred to mmaction2 format. We provide the transferred version of our K400 pretrained weights, TSN and TSM. We also provide the script for transferring weights, you can find it here.

    Moving the pretrained weights to checkpoints directory:

    cd ~/mmaction2
    mkdir checkpoints
    wget https://haofeik-data.s3.amazonaws.com/VCLR/pretrained/vclr_mm.pth
    wget https://haofeik-data.s3.amazonaws.com/VCLR/pretrained/vclr_mm_tsm.pth

Action recognition

Make sure you have prepared the dataset and environments following the previous step. Now suppose you are in the root directory of mmaction2, follow the subsequent steps to fine tune the TSN or TSM models for action recognition.

For each dataset, the train and test setting can be found in the configuration files.

  • UCF101

    • config file: tsn_ucf101.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_ucf101.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_ucf101.py \
        work_dirs/vclr/ucf101/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • HMDB51

    • config file: tsn_hmdb51.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_hmdb51.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_hmdb51.py \
        work_dirs/vclr/hmdb51/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • SomethingSomethingV2: TSN

    • config file: tsn_sthv2.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_sthv2.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_sthv2.py \
        work_dirs/vclr/tsn_sthv2/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • SomethingSomethingV2: TSM

    • config file: tsm_sthv2.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsm/vclr/tsm_sthv2.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsm/vclr/tsm_sthv2.py \
        work_dirs/vclr/tsm_sthv2/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • ActivityNet

    • config file: tsn_activitynet.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_activitynet.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_activitynet.py \
        work_dirs/vclr/tsn_activitynet/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • Results

    Arch Dataset Finetuned model Acc.
    TSN UCF101 Download link 85.6
    TSN HMDB51 Download link 54.1
    TSN SomethingSomethingV2 Download link 33.3
    TSM SomethingSomethingV2 Download link 52.0
    TSN ActivityNet Download link 71.9

Action localization

  • Step 1: Follow the previous section, suppose the finetuned model is saved at work_dirs/vclr/tsn_activitynet/latest.pth

  • Step 2: Extract ActivityNet features

    cd ~/mmaction2/tools/data/activitynet/
    
    python tsn_feature_extraction.py --data-prefix /home/ubuntu/data/ActivityNet/rawframes \
      --data-list /home/ubuntu/data/ActivityNet/anet_train_video.txt \
      --output-prefix /home/ubuntu/data/ActivityNet/rgb_feat \
      --modality RGB --ckpt /home/ubuntu/mmaction2/work_dirs/vclr/tsn_activitynet/latest.pth
    
    python tsn_feature_extraction.py --data-prefix /home/ubuntu/data/ActivityNet/rawframes \
      --data-list /home/ubuntu/data/ActivityNet/anet_val_video.txt \
      --output-prefix /home/ubuntu/data/ActivityNet/rgb_feat \
      --modality RGB --ckpt /home/ubuntu/mmaction2/work_dirs/vclr/tsn_activitynet/latest.pth
    
    python activitynet_feature_postprocessing.py \
      --rgb /home/ubuntu/data/ActivityNet/rgb_feat \
      --dest /home/ubuntu/data/ActivityNet/mmaction_feat

    Note, the root directory of ActivityNey is /home/ubuntu/data/ActivityNet/ in our case. Please replace it according to your real directory.

  • Step 3: Train and test the BMN model

    • train
      cd ~/mmaction2
      ./tools/dist_train.sh configs/localization/bmn/bmn_acitivitynet_feature_vclr.py 2 \
        --work-dir work_dirs/vclr/bmn_activitynet --validate --seed 0 --deterministic --bmn
    • test
      python tools/test.py configs/localization/bmn/bmn_acitivitynet_feature_vclr.py \
        work_dirs/vclr/bmn_activitynet/latest.pth \
        --bmn --eval [email protected] --out result.json
  • Results

    Arch Dataset Finetuned model AUC [email protected]
    BMN ActivityNet Download link 65.5 73.8

Feature visualization

We provide our feature visualization code at here.

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022