当前位置:网站首页>压缩映射定理
压缩映射定理
2022-04-23 14:27:00 【patrickpdx】
定义
设 X X X 为距离空间, T : X → X T: X \rightarrow X T:X→X 是一映射,若存在 0 ≤ λ < 1 0\leq \lambda<1 0≤λ<1,使得
d ( T x , T y ) ≤ λ d ( x , y ) , ∀ x , y ∈ X d(Tx,Ty)\leq \lambda d(x,y), \quad \forall x,y\in X d(Tx,Ty)≤λd(x,y),∀x,y∈X
则称 T T T 是压缩的
引理
压缩映射是连续的
若 x n → x x_{n} \rightarrow x xn→x,则: T x n → T x Tx_{n}\rightarrow Tx Txn→Tx
证明:
d ( T x n , T x ) ≤ λ d ( x n , x ) → 0 d(Tx_{n}, Tx) \leq \lambda d(x_{n},x) \rightarrow 0 d(Txn,Tx)≤λd(xn,x)→0
压缩映射定理
完备距离空间上的压缩映射存在唯一的不动点
证明:
设 X X X 为任意完备距离空间, T T T 是 X X X 上的压缩映射. 任取 x 0 ∈ X x_{0} \in X x0∈X,下面证明数列 { x n } \{x_{n}\} {
xn} :
x n = T x n − 1 x_{n} = T x_{n-1} xn=Txn−1
的极限 x = lim n → ∞ x n x = \lim\limits_{n\rightarrow \infty}x_{n} x=n→∞limxn 存在,且为不动点
(1) 首先证明 { x n } \{x_{n}\} {
xn} 是 Cauchy 序列:
d ( x n + 1 , x n ) = d ( T x n , T x n − 1 ) ≤ λ d ( x n , x n − 1 ) d(x_{n+1},x_{n}) = d(Tx_{n},Tx_{n-1})\leq \lambda d(x_{n},x_{n-1}) d(xn+1,xn)=d(Txn,Txn−1)≤λd(xn,xn−1)
进而
d ( x n + 1 , x n ) ≤ λ n d ( x 1 , x 0 ) d(x_{n+1},x_{n})\leq \lambda^{n}d(x_{1},x_{0}) d(xn+1,xn)≤λnd(x1,x0)
对于任何正整数 n n n 和 p p p :
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ d(x_{n+p},x_{n…
因此对于 ∀ ϵ > 0 \forall \epsilon>0 ∀ϵ>0, ∃ N \exists N ∃N,使得当 n > N n>N n>N 时,对 ∀ p \forall p ∀p 满足:
∣ d ( x n + p , x n ) ∣ ≤ ϵ |d(x_{n+p},x_{n})|\leq \epsilon ∣d(xn+p,xn)∣≤ϵ
(2) 因为空间 X X X 是完备的,因此 { x n } \{x_{n}\} { xn} 收敛
(3) 进而 x = lim n → ∞ x n = lim n → ∞ T x n − 1 = T lim n → ∞ x n − 1 = T x x=\lim\limits_{n\rightarrow \infty}x_{n} = \lim\limits_{n\rightarrow \infty} Tx_{n-1} = T \lim\limits_{n\rightarrow \infty}x_{n-1} = Tx x=n→∞limxn=n→∞limTxn−1=Tn→∞limxn−1=Tx
版权声明
本文为[patrickpdx]所创,转载请带上原文链接,感谢
https://blog.csdn.net/Jinyindao243052/article/details/124213732
边栏推荐
- Four ways of SSH restricting login
- JS key value judgment
- 51 MCU + LCD12864 LCD Tetris game, proteus simulation, ad schematic diagram, code, thesis, etc
- Qt实战:云曦日历篇
- 顺序表的操作,你真的学会了吗?
- Detailed explanation of C language P2 selection branch statement
- kprobe 的 3 种使用
- Basic regular expression
- Find daffodils - for loop practice
- Solve the problem of SSH configuration file optimization and slow connection
猜你喜欢
关于UDP接收icmp端口不可达(port unreachable)
AT89C52单片机的频率计(1HZ~20MHZ)设计,LCD1602显示,含仿真、原理图、PCB与代码等
AT89C51 MCU digital voltmeter development, measuring range 0 ~ 5V, proteus simulation, schematic diagram, PCB and C program, etc
单相交交变频器的Matlab Simulink建模设计,附Matlab仿真、PPT和论文等资料
C语言知识点精细详解——数据类型和变量【2】——整型变量与常量【1】
QT actual combat: Yunxi chat room
1 minute to understand the execution process and permanently master the for cycle (with for cycle cases)
关于在vs中使用scanf不安全的问题
MCU function signal generator, output four kinds of waveforms, adjustable frequency, schematic diagram, simulation and C program
Matlab Simulink modeling and design of single-phase AC-AC frequency converter, with MATLAB simulation, PPT and papers
随机推荐
QT actual combat: Yunxi chat room
基于单片机的DS18B20的数字温度监控报警系统设计【LCD1602显示+Proteus仿真+C程序+论文+按键设置等】
51单片机的直流电机PWM调速控制系统(附Proteus仿真+C程序等全套资料)
电子秤称重系统设计,HX711压力传感器,51单片机(Proteus仿真、C程序、原理图、论文等全套资料)
Debug on TV screen
kprobe 的 3 种使用
机器学习之逻辑回归(Logistic Regression)原理讲解和实例应用,果断收藏
TUN 设备原理
Docker (V) MySQL installation
C语言知识点精细详解——数据类型和变量【2】——整型变量与常量【1】
ASEMI整流模块MDQ100-16在智能开关电源中的作用
本以为能躺着进华为,结果陆续收到京东/滴滴/爱奇艺offer的我迷茫了
JumpServer
Qt界面优化:鼠标双击特效
A blog allows you to learn how to write markdown on vscode
OpenFaaS实战之四:模板操作(template)
Parameter stack pressing problem of C language in structure parameter transmission
分分钟掌握---三目运算符(三元运算符)
Electronic scale weighing system design, hx711 pressure sensor, 51 single chip microcomputer (proteus simulation, C program, schematic diagram, thesis and other complete data)
I thought I could lie down and enter Huawei, but I was confused when I received JD / didi / iqiyi offers one after another