当前位置:网站首页>压缩映射定理
压缩映射定理
2022-04-23 14:27:00 【patrickpdx】
定义
设 X X X 为距离空间, T : X → X T: X \rightarrow X T:X→X 是一映射,若存在 0 ≤ λ < 1 0\leq \lambda<1 0≤λ<1,使得
d ( T x , T y ) ≤ λ d ( x , y ) , ∀ x , y ∈ X d(Tx,Ty)\leq \lambda d(x,y), \quad \forall x,y\in X d(Tx,Ty)≤λd(x,y),∀x,y∈X
则称 T T T 是压缩的
引理
压缩映射是连续的
若 x n → x x_{n} \rightarrow x xn→x,则: T x n → T x Tx_{n}\rightarrow Tx Txn→Tx
证明:
d ( T x n , T x ) ≤ λ d ( x n , x ) → 0 d(Tx_{n}, Tx) \leq \lambda d(x_{n},x) \rightarrow 0 d(Txn,Tx)≤λd(xn,x)→0
压缩映射定理
完备距离空间上的压缩映射存在唯一的不动点
证明:
设 X X X 为任意完备距离空间, T T T 是 X X X 上的压缩映射. 任取 x 0 ∈ X x_{0} \in X x0∈X,下面证明数列 { x n } \{x_{n}\} {
xn} :
x n = T x n − 1 x_{n} = T x_{n-1} xn=Txn−1
的极限 x = lim n → ∞ x n x = \lim\limits_{n\rightarrow \infty}x_{n} x=n→∞limxn 存在,且为不动点
(1) 首先证明 { x n } \{x_{n}\} {
xn} 是 Cauchy 序列:
d ( x n + 1 , x n ) = d ( T x n , T x n − 1 ) ≤ λ d ( x n , x n − 1 ) d(x_{n+1},x_{n}) = d(Tx_{n},Tx_{n-1})\leq \lambda d(x_{n},x_{n-1}) d(xn+1,xn)=d(Txn,Txn−1)≤λd(xn,xn−1)
进而
d ( x n + 1 , x n ) ≤ λ n d ( x 1 , x 0 ) d(x_{n+1},x_{n})\leq \lambda^{n}d(x_{1},x_{0}) d(xn+1,xn)≤λnd(x1,x0)
对于任何正整数 n n n 和 p p p :
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ d(x_{n+p},x_{n…
因此对于 ∀ ϵ > 0 \forall \epsilon>0 ∀ϵ>0, ∃ N \exists N ∃N,使得当 n > N n>N n>N 时,对 ∀ p \forall p ∀p 满足:
∣ d ( x n + p , x n ) ∣ ≤ ϵ |d(x_{n+p},x_{n})|\leq \epsilon ∣d(xn+p,xn)∣≤ϵ
(2) 因为空间 X X X 是完备的,因此 { x n } \{x_{n}\} { xn} 收敛
(3) 进而 x = lim n → ∞ x n = lim n → ∞ T x n − 1 = T lim n → ∞ x n − 1 = T x x=\lim\limits_{n\rightarrow \infty}x_{n} = \lim\limits_{n\rightarrow \infty} Tx_{n-1} = T \lim\limits_{n\rightarrow \infty}x_{n-1} = Tx x=n→∞limxn=n→∞limTxn−1=Tn→∞limxn−1=Tx
版权声明
本文为[patrickpdx]所创,转载请带上原文链接,感谢
https://blog.csdn.net/Jinyindao243052/article/details/124213732
边栏推荐
- 本以为能躺着进华为,结果陆续收到京东/滴滴/爱奇艺offer的我迷茫了
- API Gateway/API 网关(四) - Kong的使用 - 集成Jwt和熔断插件
- Multisim Simulation Design of DC adjustable regulated power supply of LM317 (with simulation + paper + reference)
- Master in minutes --- ternary operator (ternary operator)
- On the insecurity of using scanf in VS
- MDS55-16-ASEMI整流模块MDS55-16
- KVM learning resources
- Matrix exchange row and column
- After entering the new company, the operation and maintenance engineer can understand the deployment of the system from the following items
- Qt界面优化:Qt去边框与窗体圆角化
猜你喜欢
51 MCU flowers, farmland automatic irrigation system development, proteus simulation, schematic diagram and C code
1分钟看懂执行流程,永久掌握for循环(附for循环案例)
TUN 设备原理
1 minute to understand the execution process and permanently master the for cycle (with for cycle cases)
Matlab Simulink modeling and design of single-phase AC-AC frequency converter, with MATLAB simulation, PPT and papers
基于单片机的DS18B20的数字温度监控报警系统设计【LCD1602显示+Proteus仿真+C程序+论文+按键设置等】
After entering the new company, the operation and maintenance engineer can understand the deployment of the system from the following items
Nacos作为配置中心(四) 使用Demo
C语言知识点精细详解——初识C语言【1】
L'externalisation a duré quatre ans.
随机推荐
单相交交变频器的Matlab Simulink建模设计,附Matlab仿真、PPT和论文等资料
I thought I could lie down and enter Huawei, but I was confused when I received JD / didi / iqiyi offers one after another
爬虫练习题(一)
数组模拟队列进阶版本——环形队列(真正意义上的排队)
Detailed explanation of SAR command
After entering the new company, the operation and maintenance engineer can understand the deployment of the system from the following items
QT actual combat: Yunxi chat room
Matrix exchange row and column
pnpm安装使用
API Gateway/API 网关(三) - Kong的使用 - 限流rate limiting(redis)
C语言知识点精细详解——初识C语言【1】
Docker (V) MySQL installation
Docker篇 (五) MySQL的安装
Man man notes and @ reboot usage of crontab
Usage of BC
ansible及常用模块的使用
顺序表的操作,你真的学会了吗?
ASEMI三相整流桥和单相整流桥的详细对比
vscode中文插件不生效问题解决
SHT11传感器的温度湿度监控报警系统单片机Proteus设计(附仿真+论文+程序等)