当前位置:网站首页>PyTorch 10. 学习率
PyTorch 10. 学习率
2022-04-23 06:11:00 【DCGJ666】
PyTorch 10. 学习率
scheduler
scheduler:必须关联一个优化器去调整其学习率
class _LRScheduler(object):
def __init__(self, optimizer, last_epoch=-1):
pass
def get_lr(self):
return [base_lr * self.gamma ** (self.last_epoch//self.step_size) for base_lr in self.base_lrs]
def step(self):
if epoch is None:
epoch = self.last_epoch + 1
self.last_epoch = epoch
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
optimizer:关联的优化器
last_epoch: 记录epoch数
base_lrs: 记录初始学习率
主要方法:
step():更新下一个epoch的学习率
get_lr(): 计算下一个epoch的学习率
StepLR
lr_scheduler.StepLR(optimizer, step_size, gamma=0.1,last_epoch=-1)
功能:等间隔调整学习率
主要参数:
step_size:调整间隔数
gamma:调整系数
调整方式: lr = lr * gamma
MultiStepLR
lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)
功能:按给定间隔调整学习率
主要参数:
milestones:设定调整时刻数 ,milestones = [50, 125, 160]
gamma: 调整系数
调整方式: lr = lr *gamma
ExponentialLR
lr_scheduler.ExponentialLR(optimizer, gamma, last-epoch=-1)
功能:按指数衰减调整学习率
主要参数:
gamma:指数的底
CosineAnnealingLR
lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)
功能:余弦周期调整学习率
主要参数:
T_max: 下降周期
eta_min: 学习率下限
调整方式:
l r t = l r m i n + 1 2 ( l r m a x − l r m i n ) ( 1 + c o s ( T c u r T m a x π ) ) lr_t = lr_{min}+\frac{1}{2}(lr_{max}-lr_{min})(1+cos(\frac{T_{cur}}{T_{max}}\pi)) lrt=lrmin+21(lrmax−lrmin)(1+cos(TmaxTcurπ))
ReduceLRonPlateau
lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel',cooldown=0, min_lr=0, eps=1e-08)
功能:监控指标,当指标不再变化则调整
主要参数:
mode: min/max 两种模式
factor: 调整系数
patience: “耐心”,接受几次不变化
cooldown: “冷却时间”,停止监控一段时间
verbose: 是否打印日志
min_lr: 学习率下限
eps: 学习率衰减最小值
版权声明
本文为[DCGJ666]所创,转载请带上原文链接,感谢
https://blog.csdn.net/DCGJ666/article/details/121589443
边栏推荐
- Markdown basic grammar notes
- [recommendation for new books in 2021] professional azure SQL managed database administration
- 深度学习模型压缩与加速技术(一):参数剪枝
- [point cloud series] pnp-3d: a plug and play for 3D point clouds
- torch_ Geometric learning 1, messagepassing
- Gephi tutorial [1] installation
- Pytorch模型保存与加载(示例)
- Chapter 2 pytoch foundation 2
- Android interview Online Economic encyclopedia [constantly updating...]
- Bottom navigation bar based on bottomnavigationview
猜你喜欢
Google AdMob advertising learning
MySQL数据库安装与配置详解
【点云系列】 A Rotation-Invariant Framework for Deep Point Cloud Analysis
【点云系列】Fully-Convolutional geometric features
【点云系列】SG-GAN: Adversarial Self-Attention GCN for Point Cloud Topological Parts Generation
Face_ Recognition face detection
【3D形状重建系列】Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion
Visual studio 2019 installation and use
[Point Cloud Series] SG - Gan: Adversarial Self - attachment GCN for Point Cloud Topological parts Generation
ThreadLocal,看我就够了!
随机推荐
Machine learning notes 1: learning ideas
【動態規劃】不同路徑2
Gephi tutorial [1] installation
How keras saves and loads the keras model
Pytorch模型保存与加载(示例)
Binder mechanism principle
Keras如何保存、加载Keras模型
【點雲系列】SG-GAN: Adversarial Self-Attention GCN for Point Cloud Topological Parts Generation
[Point Cloud Series] SG - Gan: Adversarial Self - attachment GCN for Point Cloud Topological parts Generation
第5 章 机器学习基础
C# EF mysql更新datetime字段报错Modifying a column with the ‘Identity‘ pattern is not supported
【2021年新书推荐】Professional Azure SQL Managed Database Administration
[3D shape reconstruction series] implicit functions in feature space for 3D shape reconstruction and completion
ArcGIS License Server Administrator 无法启动解决方法
[dynamic programming] Yang Hui triangle
Easyui combobox 判断输入项是否存在于下拉列表中
第1章 NumPy基础
[dynamic programming] longest increasing subsequence
[point cloud series] a rotation invariant framework for deep point cloud analysis
如何对多维矩阵进行标准化(基于numpy)