Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

Overview

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation:


Work In Progress, Results can't be replicated yet with the models here

  • UPDATE: April 28th: Skip_Connection added thanks to the reviewers, check model model-tiramasu-67-func-api.py

feel free to open issues for suggestions:)

  • Keras2 + TF used for the recent updates, which might cause with some confilict from previous version I had in here

What is The One Hundred Layers Tiramisu?

  • A state of art (as in Jan 2017) Semantic Pixel-wise Image Segmentation model that consists of a fully deep convolutional blocks with downsampling, skip-layer then to Upsampling architecture.
  • An extension of DenseNets to deal with the problem of semantic segmentation.

Fully Convolutional DensNet = (Dense Blocks + Transition Down Blocks) + (Bottleneck Blocks) + (Dense Blocks + Transition Up Blocks) + Pixel-Wise Classification layer

model

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio) arXiv:1611.09326 cs.CV

Requirements:


  • Keras==2.0.2
  • tensorflow-gpu==1.0.1
  • or just go ahead and do: pip install -r requirements.txt

Model Strucure:


  • DenseBlock: BatchNormalization + Activation [ Relu ] + Convolution2D + Dropout

  • TransitionDown: BatchNormalization + Activation [ Relu ] + Convolution2D + Dropout + MaxPooling2D

  • TransitionUp: Deconvolution2D (Convolutions Transposed)

model-blocks


Model Params:


  • RMSprop is used with Learnining Rete of 0.001 and weight decay 0.995
    • However, using those got me nowhere, I switched to SGD and started tweaking the LR + Decay myself.
  • There are no details given about BatchNorm params, again I have gone with what the Original DenseNet paper had suggested.
  • Things to keep in mind perhaps:
    • the weight inti: he_uniform (maybe change it around?)
    • the regualzrazation too agressive?

Repo (explanation):


  • Download the CamVid Dataset as explained below:
    • Use the data_loader.py to crop images to 224, 224 as in the paper implementation.
  • run model-tiramasu-67-func-api.py or python model-tirmasu-56.py for now to generate each models file.
  • run python train-tirmasu.py to start training:
    • Saves best checkpoints for the model and data_loader included for the CamVidDataset
  • helper.py contains two methods normalized and one_hot_it, currently for the CamVid Task

Dataset:


  1. In a different directory run this to download the dataset from original Implementation.

    • git clone [email protected]:alexgkendall/SegNet-Tutorial.git
    • copy the /CamVid to here, or change the DataPath in data_loader.py to the above directory
  2. The run python data_loader.py to generate these two files:

    • /data/train_data.npz/ and /data/train_label.npz
    • This will make it easy to process the model over and over, rather than waiting the data to be loaded into memory.

  • Experiments:
Models Acc Loss Notes
FC-DenseNet 67 model-results model-results 150 Epochs, RMSPROP

To Do:


[x] FC-DenseNet 103
[x] FC-DenseNet 56
[x] FC-DenseNet 67
[ ] Replicate Test Accuracy CamVid Task
[ ] Replicate Test Accuracy GaTech Dataset Task
[ ] Requirements
  • Original Results Table:

    model-results

Owner
Yad Konrad
indie researcher in areas of Machine Learning, Linguistics & Program Synthesis.
Yad Konrad
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022